Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling the state of quantum spins with electric currents

Abstract

A current of spin-polarized electrons senses and controls the magnetic state of nanostructured materials1. Obtaining similar electrical access to quantum spin systems, such as single-molecule magnets, is still in its infancy2. Recent progress has been achieved by probing the spin system near thermal equilibrium3,4,5,6,7,8,9. However, it is the elusive non-equilibrium properties of the excited states that govern the time evolution of such structures and will ultimately establish the feasibility of applications in data storage2,10 and quantum information processing11,12. Here we use spin-polarized scanning tunnelling microscopy13 to pump electron spins of atoms on surfaces into highly excited states and sense the resulting spatial orientation of the spin. This electrical control culminates in complete inversion of the spin-state population and gives experimental access to the spin relaxation times of each excited state. The direction of current flow determines the orientation of the atom’s spin, indicating that electrical switching and sensing of future magnetic bits is feasible in the quantum regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin-averaging and spin-polarized spectra of a Mn atom on a Cu2N/Cu(100) surface.
Figure 2: Spectra of a Mn–Mn dimer.
Figure 3: Mn atom spectra and spin-state occupations during spin pumping.
Figure 4: Spin lifetimes and magnetic-field dependence of Mn atom spectra.

Similar content being viewed by others

References

  1. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  2. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  ADS  Google Scholar 

  3. Grose, J. E. et al. Tunnelling spectra of individual magnetic endofullerene molecules. Nature Mater. 7, 884–889 (2008).

    Article  ADS  Google Scholar 

  4. Park, J. et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417, 722–725 (2002).

    Article  ADS  Google Scholar 

  5. Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 417, 725–729 (2002).

    Article  ADS  Google Scholar 

  6. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  ADS  Google Scholar 

  7. Chen, X. et al. Probing superexchange interaction in molecular magnets by spin-flip spectroscopy and microscopy. Phys. Rev. Lett. 101, 197208 (2008).

    Article  ADS  Google Scholar 

  8. Tsukahara, N. et al. Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface. Phys. Rev. Lett. 102, 167203 (2009).

    Article  ADS  Google Scholar 

  9. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  ADS  Google Scholar 

  10. Thomas, L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  ADS  Google Scholar 

  11. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  Google Scholar 

  12. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  ADS  Google Scholar 

  13. Bode, M. Spin-polarized scanning tunnelling microscopy. Rep. Prog. Phys. 66, 523–582 (2003).

    Article  ADS  Google Scholar 

  14. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  15. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  ADS  Google Scholar 

  16. Choi, T., Ruggiero, C. D. & Gupta, J. A. Incommensurability and atomic structure of c(2×2)N/Cu(100): A scanning tunnelling microscopy study. Phys. Rev. B 78, 035430 (2008).

    Article  ADS  Google Scholar 

  17. Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    Article  ADS  Google Scholar 

  18. Balashov, T. et al. Inelastic electron–magnon interaction and spin transfer torque. Phys. Rev. B 78, 174404 (2008).

    Article  ADS  Google Scholar 

  19. Fernandez-Rossier, J. Theory of single-spin inelastic tunneling spectroscopy. Phys. Rev. Lett. 102, 256802 (2009).

    Article  ADS  Google Scholar 

  20. Fransson, J. Spin inelastic electron tunneling spectroscopy on local spin adsorbed on surface. Nano Lett. 9, 2414–2417 (2009).

    Article  ADS  Google Scholar 

  21. Persson, M. Theory of inelastic electron tunneling from a localized spin in the impulsive approximation. Phys. Rev. Lett. 103, 050801 (2009).

    Article  ADS  Google Scholar 

  22. Lorente, N. & Gauyacq, J. P. Efficient spin transitions in inelastic electron tunneling spectroscopy. Phys. Rev. Lett. 103, 176601 (2009).

    Article  ADS  Google Scholar 

  23. Kirschner, J. Direct and exchange contributions in inelastic scattering of spin-polarized electrons from iron. Phys. Rev. Lett. 55, 973–976 (1985).

    Article  ADS  Google Scholar 

  24. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  25. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  26. Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    Article  ADS  Google Scholar 

  27. Leuenberger, M. N. & Loss, D. Spin relaxation in Mn12-acetate. Europhys. Lett. 46, 692–698 (1999).

    Article  ADS  Google Scholar 

  28. Delgado, F., Palacios, J. J. & Fernandez-Rossier, J. Spin-transfer torque on a single magnetic adatom. Phys. Rev. Lett. 104, 026601 (2010).

    Article  ADS  Google Scholar 

  29. Bartels, L., Meyer, G. & Rieder, K.-H. Controlled vertical manipulation of single Co molecules with the scanning tunneling microscope: A route to chemical contrast. Appl. Phys. Lett. 71, 213–215 (1997).

    Article  ADS  Google Scholar 

  30. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  ADS  Google Scholar 

  31. Kreuzer, H. J. Nonequilibrium Thermodynamics and its Statistical Foundations (Clarendon, 1981).

    Google Scholar 

Download references

Acknowledgements

We thank D. Eigler for mentoring and great discussions, C. Hirjibehedin for suggesting the importance of spin-dependent elastic tunnelling and B. Melior for expert technical contributions. S.L. acknowledges support from the Alexander von Humboldt Foundation; K.v.B. from the German Research Foundation (DFG) (Forschungsstipendium); A.F.O. from the Leiden University Fund; and S.L., M.T., C.P.L. and A.J.H. from the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors conducted the experiments and contributed to the preparation of the paper, S.L., C.P.L. and A.J.H. developed the rate equation model, S.L. and K.v.B. analysed the data.

Corresponding author

Correspondence to Andreas J. Heinrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loth, S., von Bergmann, K., Ternes, M. et al. Controlling the state of quantum spins with electric currents. Nature Phys 6, 340–344 (2010). https://doi.org/10.1038/nphys1616

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1616

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing