Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a one-dimensional spin–orbit gap in a quantum wire

Abstract

Understanding the flow of spins in magnetic layered structures has resulted in an increase in data storage density in hard drives over the past decade of more than two orders of magnitude1. Following this remarkable success, the field of ‘spintronics’ or spin-based electronics1,2,3 is moving beyond effects based on local spin polarization and is turning towards spin–orbit interaction (SOI) effects, which hold promise for the production, detection and manipulation of spin currents, allowing coherent transmission of information within a device1,2. Although SOI-induced spin transport effects have been observed in two- and three-dimensional samples, these have been subtle and elusive, often detected only indirectly in electrical transport or else with more sophisticated techniques4,5,6,7,8,9. Here we present the first observation of a predicted ‘spin–orbit gap’ in a one-dimensional sample, where counter-propagating spins, constituting a spin current, are accompanied by a clear signal in the easily measured linear conductance of the system10,11. We first introduce the class of phenomena we dub ‘the one-dimensional spin–orbit gap’ using a simple example adapted from ref. 10, then describe our experiment in detail and finally present a more elaborate model that captures most of the features seen in our data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spin–orbit gap in a simple model and the associated conductance features.
Figure 2: The device and measurement set-up.
Figure 3: The first two conductance steps of a quantum wire and their evolution in magnetic fields applied in two different directions.
Figure 4: Predictions from our model of band structures and conductance traces.
Figure 5: Reproducibility.

Similar content being viewed by others

References

  1. Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    Article  ADS  Google Scholar 

  2. Bratkovsky, A. M. Spintronic effects in metallic, semiconductor, metal-oxide and metal–semiconductor heterostructures. Rep. Prog. Phys. 71, 026502 (2008).

    Article  ADS  Google Scholar 

  3. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  ADS  Google Scholar 

  4. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  5. Sih, V. et al. Generating spin currents in semiconductors with the spin Hall effect. Phys. Rev. Lett. 97, 096605 (2006).

    Article  ADS  Google Scholar 

  6. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  7. Frolov, S. M. et al. Ballistic spin resonance. Nature 458, 868–871 (2009).

    Article  ADS  Google Scholar 

  8. Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178–181 (2009).

    Article  ADS  Google Scholar 

  9. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  ADS  Google Scholar 

  10. Pershin, Y. V., Nesteroff, J. A. & Privman, V. Effect of spin–orbit interaction and in-plane magnetic field on the conductance of a quasi-one-dimensional system. Phys. Rev. B 69, 121306(R) (2004).

    Article  ADS  Google Scholar 

  11. Zhang, S., Liang, R., Zhang, E., Zhang, L. & Liu, Y. Magnetosubbands of semiconductor quantum wires with Rashba and Dresselhaus spin–orbit coupling. Phys. Rev. B 73, 155316 (2006).

    Article  ADS  Google Scholar 

  12. Griffiths, D. J. Introduction to Electrodynamics 3rd edn (Prentice Hall, 1998).

    Google Scholar 

  13. Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Vol. 191 (Springer Tracts in Modern Physics, Springer, 2003).

    Book  Google Scholar 

  14. Elliott, R. J. Theory of the effect of spin–orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Article  ADS  Google Scholar 

  15. Cronenwett, S. M. Coherence, Charging and Spin Effects in Quantum Dots and Point Contacts. PhD thesis, Stanford Univ. (2001).

  16. Kouwenhoven, L. P. et al. Nonlinear conductance of quantum point contacts. Phys. Rev. B 39, 8040–8043 (1989).

    Article  ADS  Google Scholar 

  17. Glazman, L. I. & Khaetskii, A. V. Nonlinear quantum conductance of a point contact. JETP Lett. 48, 591–595 (1998).

    ADS  Google Scholar 

  18. Wu, C., Bernevig, B. A. & Zhang, S.-C. Helical liquid and the edge of quantum spin Hall systems. Phys. Rev. Lett. 96, 106401 (2006).

    Article  ADS  Google Scholar 

  19. Pfeiffer, L. et al. Formation of a high quality two-dimensional electron gas on cleaved GaAs. Appl. Phys. Lett. 56, 1697–1699 (1990).

    Article  ADS  Google Scholar 

  20. Pfeiffer, L. N., de Picciotto, R., Quay, C. H. L., West, K. W. & Baldwin, K. W. Ballistic hole transport in a quantum wire. Appl. Phys. Lett. 87, 073111 (2005).

    Article  ADS  Google Scholar 

  21. Manfra, M., Pfeiffer, L., West, K., de Picciotto, R. & Baldwin, K. High mobility two-dimensional hole system in GaAs/AlGaAs quantum wells grown on (100) GaAs substrates. Appl. Phys. Lett. 86, 162106 (2005).

    Article  ADS  Google Scholar 

  22. Klochan, O. et al. The interplay between one-dimensional confinement and two-dimensional crystallographic anisotropy effects in ballistic hole quantum wires. New J. Phys. 11, 043018 (2009).

    Article  ADS  Google Scholar 

  23. Danneau, R. et al. Zeeman splitting in ballistic hole quantum wires. Phys. Rev. Lett. 97, 026403 (2006).

    Article  ADS  Google Scholar 

  24. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  25. de Picciotto, R. et al. 2D–1D coupling in cleaved edge overgrowth. Phys. Rev. Lett. 85, 1730–1733 (2000).

    Article  ADS  Google Scholar 

  26. Auslaender, O. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  Google Scholar 

  27. Yacoby, A., Stormer, H. L., Baldwin, K. W., Pfeiffer, L. N. & West, K. W. Magneto-transport spectroscopy on a quantum wire. Solid State Commun. 101, 77–1 (1997).

    Article  ADS  Google Scholar 

  28. Auslaender, O. M. et al. Spin-charge separation and localization in one dimension. Science 208, 88–92 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Joyez, M. A. Wistey, J. E. Moore and A. S. Goldhaber for helpful discussions and/or comments on the manuscript. J.A.S. acknowledges support from a National Science Foundation graduate fellowship, C.Q.H.L. support from a Harvey Fellowship and Bell Labs, and D.G.-G. a Fellowship from the David and Lucile Packard Foundation and a Hellman Faculty Scholar Award. Work at Stanford was primarily supported by the AFOSR under contracts FA9550-04-1-0384 (PECASE) and FA9550-08-1-0427.

Author information

Authors and Affiliations

Authors

Contributions

K.W.W. and L.N.P. carried out the molecular beam epitaxy growth, R.d.P. and C.Q.H.L. the rest of the sample fabrication. K.W.B. characterized the 2DHGs before the cleave as well as control samples from the overgrowth step. R.d.P., C.Q.H.L. and J.A.S. carried out measurements. T.L.H. derived the theoretical model with input from R.d.P. and C.Q.H.L. C.Q.H.L., R.d.P., D.G.-G., T.L.H. and J.A.S. analysed the data. C.Q.H.L. wrote the manuscript together with R.d.P., D.G.G. and T.L.H. R.d.P. and L.N.P. had the idea for the experiment.

Corresponding author

Correspondence to C. H. L. Quay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quay, C., Hughes, T., Sulpizio, J. et al. Observation of a one-dimensional spin–orbit gap in a quantum wire. Nature Phys 6, 336–339 (2010). https://doi.org/10.1038/nphys1626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing