Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity

Abstract

The iron arsenic high-temperature superconductors1,2 exhibit particularly rich phase diagrams. In the AE(Fe1−xTx)2As2 family (known as ‘122’, with AE being Ca, Sr or Ba and T being a transition metal), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material splits and is suppressed by carrier doping3,4. A superconducting region appears as likely in the orthorhombic/antiferromagnetic (AFM) state as in the tetragonal/paramagnetic state3,5,6. An important question then is what determines the critical doping at which superconductivity emerges, as the AFM order is fully suppressed only close to optimal doping. Here we report evidence from angle-resolved photoemission spectroscopy that marked changes in the Fermi surface coincide with the onset of superconductivity in electron-doped Ba(Fe1−xCox)2As2. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the petal-like hole pockets at the Fermi level. These hole pockets vanish—that is, undergo a Lifshitz transition7—as the cobalt concentration is increased sufficiently to support superconductivity. Superconductivity and magnetism are competing states in this system: when petal-like hole pockets are present, superconductivity is fully suppressed, whereas in their absence the two states can coexist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Fermi-surface reconstruction and its magnetic origin.
Figure 2: The vanishing of the marked Fermi-surface reconstruction coincides with the onset of superconductivity.
Figure 3: Summary.

Similar content being viewed by others

References

  1. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with Tc=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  Google Scholar 

  2. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  3. Ni, N. et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B 78, 214515 (2008).

    Article  ADS  Google Scholar 

  4. Canfield, P. C., Bud’ko, S. L., Ni, N., Yan, J. Q. & Kracher, A. Decoupling of the superconducting and magnetic (structural) phase transitions in electron-doped BaFe2As2 . Phys. Rev. B 80, 060501 (2009).

    Article  ADS  Google Scholar 

  5. Pratt, D. K. et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques. Phys. Rev. Lett. 103, 087001 (2009).

    Article  ADS  Google Scholar 

  6. Lester, C. et al. Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−xCox)2As2 . Phys. Rev. B 79, 144523 (2009).

    Article  ADS  Google Scholar 

  7. Lifshitz, I. M. Anomalies of electron characteristics of a metal in the high pressure region. Sov. Phys. JETP 11, 1130–1135 (1960).

    Google Scholar 

  8. Liu, G. et al. Band-structure reorganization across the magnetic transition in BaFe2As2 seen via high-resolution angle-resolved photoemission. Phys. Rev. B 80, 134519 (2009).

    Article  ADS  Google Scholar 

  9. Yang, L. X. et al. Electronic structure and unusual exchange splitting in the spin-density-wave state of the BaFe2As2 parent compound of iron-based superconductors. Phys. Rev. Lett. 102, 107002 (2009).

    Article  ADS  Google Scholar 

  10. Zhang, Y. et al. Unusual doping dependence of the electronic structure and coexistence of spin-density-wave and superconductor phases in single crystalline Sr1−xKxFe2As2 . Phys. Rev. Lett. 102, 127003 (2009).

    Article  ADS  Google Scholar 

  11. Hsieh, D. et al. Experimental determination of the microscopic origin of magnetism in parent iron pnictides. Preprint at http://arxiv.org/abs/0812.2289 (2008).

  12. Kondo, T. et al. Unexpected Fermi-surface nesting in the pnictide parent compounds BaFe2As2 and CaFe2As2 revealed by angle-resolved photoemission spectroscopy. Phys. Rev. B 81, 060507(R) (2010).

    Article  ADS  Google Scholar 

  13. Liu, C. et al. Three- to two-dimensional transition of the electronic structure in CaFe2As2: A parent compound for an iron arsenic high-temperature superconductor. Phys. Rev. Lett. 102, 167004 (2009).

    Article  ADS  Google Scholar 

  14. Yi, M. et al. Unconventional electronic reconstruction in undoped (Ba,Sr)Fe2As2 across the spin density wave transition. Phys. Rev. B 80, 174510 (2009).

    Article  ADS  Google Scholar 

  15. Zabolotnyy, V. B. et al. (π,π) electronic order in iron arsenide superconductors. Nature 457, 569–572 (2009).

    Article  ADS  Google Scholar 

  16. Zhang, J., Sknepnek, R., Fernandes, R. M. & Schmalian, J. Orbital coupling and superconductivity in the iron pnictides. Phys. Rev. B 79, 220502(R) (2009).

    Article  ADS  Google Scholar 

  17. Christianson, A. D. et al. Static and dynamic magnetism in underdoped superconductor BaFe1.92Co0.08As2 . Phys. Rev. Lett. 103, 087002 (2009).

    Article  ADS  Google Scholar 

  18. Terashima, K. et al. Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330–7333 (2009).

    Article  ADS  Google Scholar 

  19. Mun, E. D., Bud’ko, S. L., Ni, N. & Canfield, P. C. Thermoelectric power and Hall coefficient measurements on Ba(Fe1−xTx)2As2 (T=Co and Cu). Phys. Rev. B 80, 054517 (2009).

    Article  ADS  Google Scholar 

  20. Fang, L. et al. Roles of multiband effects and electron–hole asymmetry in the superconductivity and normal-state properties of Ba(Fe1−xCox)2As2 . Phys. Rev. B 80, 140508(R) (2009).

    Article  ADS  Google Scholar 

  21. Rullier-Albenque, F. et al. Hall effect and resistivity study of the magnetic transition, carrier content, and Fermi-liquid behavior in Ba(Fe1−xCox)2As2 . Phys. Rev. Lett. 103, 057001 (2009).

    Article  ADS  Google Scholar 

  22. Ni, N. et al. Phase diagrams of Ba(Fe1−xMx)2As2 single crystals (M=Rh and Pd). Phys. Rev. B 80, 024511 (2009).

    Article  ADS  Google Scholar 

  23. Butch, N. P. et al. Effective carrier type and field-dependence of the reduced-Tc superconducting state in SrFe2−xNixAs2 . Phys. Rev. B 81, 024518 (2010).

    Article  ADS  Google Scholar 

  24. Evtushinsky, D. V. et al. Momentum dependence of the superconducting gap in Ba1−xKxFe2As2 . Phys. Rev. B 79, 054517 (2009).

    Article  ADS  Google Scholar 

  25. Park, J. T. et al. Electronic phase separation in the slightly underdoped iron pnictide superconductor Ba1−xKxFe2As2 . Phys. Rev. Lett. 102, 117006 (2009).

    Article  ADS  Google Scholar 

  26. Fukazawa, H. et al. 75As NMR study of hole-doped superconductor Ba1−xKxFe2As2(Tc38 K). J. Phys. Soc. Jpn 78, 033704 (2009).

    Article  ADS  Google Scholar 

  27. Fernandes, R. M. et al. Unconventional pairing in the iron arsenide superconductors. Phys. Rev. B 81, 140501(R) (2010).

    Article  ADS  Google Scholar 

  28. Schrieffer, J. R. Wards identity and the suppression of spin fluctuation superconductivity. J. Low Temp. Phys. 99, 397–402 (1995).

    Article  ADS  Google Scholar 

  29. Parker, D., Vavilov, M. G., Chubukov, A. V. & Mazin, I. I. Coexistence of superconductivity and a spin density wave in pnictide superconductors: Gap symmetry and nodal lines. Phys. Rev. B 80, 100508(R) (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Y. S. Kim for his excellent instrumental support at ALS. Ames Laboratory is supported by the Department of Energy—Basic Energy Sciences under Contract No. DE-AC02-07CH11358. ALS is operated by the US DOE under Contract No. DE-AC03-76SF00098.

Author information

Authors and Affiliations

Authors

Contributions

T.K., C.L. and A.K. devised the concept of the experiments; T.K., C.L., A.K., A.D.P., A.B. and E.R. carried out the ARPES measurements; C.L. analysed the ARPES data with support from T.K. and A.D.P.; R.M.F. and J.S. developed the theoretical model and carried out calculations. N.N., A.N.T., E.D.M., S.L.B. and P.C.C. provided the single crystals and carried out the transport measurements. C.L. prepared the manuscript with support from A.K., P.C.C. and J.S. Section I of the Supplementary Information was prepared by R.M.F. All authors made a substantial contribution.

Corresponding author

Correspondence to Adam Kaminski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 661 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Kondo, T., Fernandes, R. et al. Evidence for a Lifshitz transition in electron-doped iron arsenic superconductors at the onset of superconductivity. Nature Phys 6, 419–423 (2010). https://doi.org/10.1038/nphys1656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing