Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Positive noise cross-correlation in hybrid superconducting and normal-metal three-terminal devices

Abstract

Non-local entanglement is a key ingredient to quantum information processing. For photons, entanglement has been demonstrated1, but it is more difficult to observe for electrons. One approach is to use a superconductor, where electrons form spin-entangled Cooper pairs, which is a natural source for entangled electrons. For a three-terminal device consisting of a superconductor sandwiched between two normal metals, it has been predicted that Cooper pairs can split into spin-entangled electrons flowing in the two spatially separated normal metals2,3,4,5, resulting in a negative non-local resistance and a positive current–current correlation6,7. The former prosperity has been observed8,9, but not the latter. Here we show that both characteristics can be observed, consistent with Cooper-pair splitting. Moreover, the splitting efficiency can be tuned by independently controlling the energy of the electrons passing the two superconductor/normal-metal interfaces, which may lead to better understanding and control of non-local entanglement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the cross-correlation measurement.
Figure 2: Junction characterization.
Figure 3: Bias current dependence of voltage noise power by the cross-correlation measurement.
Figure 4: Bias current dependence of local and non-local differential resistance.

Similar content being viewed by others

References

  1. Zhao, Z. et al. Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004).

    Article  ADS  Google Scholar 

  2. Lesovik, G. B., Martin, T. & Blatter, G. Electronic entanglement in the vicinity of a superconductor. Eur. Phys. J. B 24, 287–290 (2001).

    Article  ADS  Google Scholar 

  3. Recher, P. & Loss, D. Dynamical Coulomb blockade and spin-entangled electrons. Phys. Rev. Lett. 91, 267003 (2003).

    Article  ADS  Google Scholar 

  4. Hofstetter, L., Csonka, S., Nygrd, J. & Schnenberger, C. Cooper pair splitter realized in a two-quantum-dot Y-junction. Nature 461, 960–963 (2009).

    Article  ADS  Google Scholar 

  5. Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  ADS  Google Scholar 

  6. Byers, J. M. & Flatté, M. E. Probing spatial correlations with nanoscale two-contact tunnelling. Phys. Rev. Lett. 74, 306–309 (1995).

    Article  ADS  Google Scholar 

  7. Deutscher, G. & Feinberg, D. Coupling superconducting–ferromagnetic point contacts by Andreev reflections. Appl. Phys. Lett. 76, 487–489 (2000).

    Article  ADS  Google Scholar 

  8. Beckmann, D., Weber, H. B. & Löhneysen, H. v. Evidence for crossed Andreev reflection in superconductor–ferromagnet hybrid structures. Phys. Rev. Lett. 93, 197003 (2004).

    Article  ADS  Google Scholar 

  9. Russo, S., Kroug, M., Klapwijk, T. M. & Morpurgo, A. F. Experimental observation of bias-dependent nonlocal Andreev reflection. Phys. Rev. Lett. 95, 027002 (2005).

    Article  ADS  Google Scholar 

  10. Samuelsson, P., Sukhorukov, E. V. & BĂ¼ttiker, M. Two-particle Aharonov-Bohm effect and entanglement in the electronic Hanbury Brown Twiss setup. Phys. Rev. Lett. 92, 026805 (2004).

    Article  ADS  Google Scholar 

  11. Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article  ADS  Google Scholar 

  12. Samuelsson, P., Neder, I. & BĂ¼ttiker, M. Reduced and projected two-particle entanglement at finite temperatures. Phys. Rev. Lett. 102, 106804 (2009).

    Article  ADS  Google Scholar 

  13. Andreev, A. The thermal conductivity of the intermediate state in superconductor. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  14. Cadden-Zimansky, P. & Chandrasekhar, V. Nonlocal correlations in normal-metal superconducting systems. Phys. Rev. Lett. 97, 237003 (2006).

    Article  ADS  Google Scholar 

  15. Kleine, A., Baumgartner, A., Trbovic, J. & Schönenberger, C. Contact resistance dependence of crossed Andreev reflection. Europhys. Lett. 87, 27011 (2009).

    Article  ADS  Google Scholar 

  16. Falci, G., Feinberg, D. & Hekking, F. W. J. Correlated tunnelling into a superconductor in a multiprobe hybrid structure. Europhys. Lett. 54, 255–261 (2001).

    Article  ADS  Google Scholar 

  17. Kalenkov, M. S. & Zaikin, A. D. Nonlocal Andreev reflection at high transmissions. Phys. Rev. B 75, 172503 (2007).

    Article  ADS  Google Scholar 

  18. Levy Yeyati, A., Bergeret, F. S., Martı´n-Rodero, A. & Klapwijk, T. M. Entangled Andreev pairs and collective excitations in nanoscale superconductors. Nature Phys. 3, 455–459 (2007).

    Article  ADS  Google Scholar 

  19. Blanter, Y. M. & Buttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 336, 2–166 (2000).

    Article  ADS  Google Scholar 

  20. Bignon, G., Houzet, M., Pistolesi, F. & Hekking, F. W. J. Current–current correlations in hybrid superconducting and normal-metal multiterminal structures. Europhys. Lett. 67, 110–116 (2004).

    Article  ADS  Google Scholar 

  21. Mélin, R., Benjamin, C. & Martin, T. Positive cross correlations of noise in superconducting hybrid structures: Roles of interfaces and interactions. Phys. Rev. B 77, 094512 (2008).

    Article  ADS  Google Scholar 

  22. Cottet, A., Belzig, W. & Bruder, C. Positive cross correlations in a three-terminal quantum dot with ferromagnetic contacts. Phys. Rev. Lett. 92, 206801 (2004).

    Article  ADS  Google Scholar 

  23. Rychkov, V. & BĂ¼ttiker, M. Mesoscopic versus macroscopic division of current fluctuations. Phys. Rev. Lett. 96, 166806 (2006).

    Article  ADS  Google Scholar 

  24. BĂ¼ttiker, M. Scattering theory of current and intensity noise correlations in conductors and wave guides. Phys. Rev. B 46, 12485–12507 (1992).

    Article  ADS  Google Scholar 

  25. Jehl, X., Sanquer, M., Calemczuk, R. & Mailly, D. Detection of doubled shot noise in short normal-metal/superconductor junctions. Nature 405, 50–53 (2000).

    Article  ADS  Google Scholar 

  26. Pothier, H., Guéron, S., Esteve, D. & Devoret, M. H. Flux-modulated Andreev current caused by electronic interference. Phys. Rev. Lett. 73, 2488–2491 (1994).

    Article  ADS  Google Scholar 

  27. Eiles, T. M., Martinis, J. M. & Devoret, M. H. Even–odd symmetry breaking in the NSN Coulomb blockade electrometer. Physica B 189, 210–217 (1993).

    Article  ADS  Google Scholar 

  28. Lefloch, F., Hoffmann, C., Sanquer, M. & Quirion, D. Doubled full shot noise in quantum coherent superconductor–semiconductor junctions. Phys. Rev. Lett. 90, 067002 (2003).

    Article  ADS  Google Scholar 

  29. Kauppinen, J. P. & Pekola, J. P. Charging in solitary, voltage biased tunnel junctions. Phys. Rev. Lett. 77, 3889–3892 (1996).

    Article  ADS  Google Scholar 

  30. Chtchelkatchev, N. M., Blatter, G., Lesovik, G. B. & Martin, T. Bell inequalities and entanglement in solid-state devices. Phys. Rev. B 66, 161320 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. BĂ¼ttiker, W. Belzig and A. Levy Yeyati for comments on our preprint. This work was sponsored by the National Science Foundation through grant no. DMR-0604601.

Author information

Authors and Affiliations

Authors

Contributions

J.W. fabricated samples and carried out measurements and analysis. J.W. and V.C. prepared the manuscript.

Corresponding authors

Correspondence to Jian Wei or V. Chandrasekhar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3936 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Chandrasekhar, V. Positive noise cross-correlation in hybrid superconducting and normal-metal three-terminal devices. Nature Phys 6, 494–498 (2010). https://doi.org/10.1038/nphys1669

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing