Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Implementation of superconductor/ferromagnet/ superconductor π-shifters in superconducting digital and quantum circuits

Abstract

High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal–oxide–semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a π-type Josephson junction1,2 in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem3. Moreover, using π-junctions in superconducting qubits may help to protect them from noise4,5. Here we demonstrate the operation of three superconducting circuits—two of them are classical and one quantum—that all utilize such π-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology6. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a π-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a π-junction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complementary d.c.-SQUIDs.
Figure 2: π-SFQ two-stage frequency divider.
Figure 3: Self-biased phase qubit.
Figure 4: Rabi oscillations between the ground and the excited qubit states resulted from resonant microwave driving.

Similar content being viewed by others

References

  1. Bulaevskii, L. N., Kuzii, V. V. & Sobyanin, A. A. Superconducting system with weak coupling to the current in the ground state. J. Exp. Theor. Phys. Lett. 25, 290–294 (1977).

    Google Scholar 

  2. Buzdin, A. I., Bulaevskij, L. N. & Panyukov, S. V. Critical-current oscillations as a function of the exchange field and thickness of the ferromagnetic metal (F) in an S–F–S Josephson junction. J. Exp. Theor. Phys. Lett. 35, 178–180 (1982).

    Google Scholar 

  3. Ustinov, A. V. & Kaplunenko, V. K. Rapid single-flux quantum logic using π-shifters. J. Appl. Phys. 94, 5405–5407 (2003).

    Article  ADS  Google Scholar 

  4. Ioffe, L. B., Geshkenbein, V. B., Feigelman, M. V., Fauchère, A. L. & Blatter, G. Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999).

    Article  ADS  Google Scholar 

  5. Blatter, G., Geshkenbein, V. B. & Ioffe, L. B. Design aspects of superconducting-phase quantum bits. Phys. Rev. B 63, 174511 (2001).

    Article  ADS  Google Scholar 

  6. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: Evidence for a π-junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  ADS  Google Scholar 

  7. Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—evidence for d x 2 − y 2 symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    Article  ADS  Google Scholar 

  8. Baselmans, J. J. A., Morpurgo, A. F., van Wees, B. & Klapwijk, T. M. Reversing the direction of supercurrent in a controllable Josephson junction. Nature 397, 43–45 (1999).

    Article  ADS  Google Scholar 

  9. Testa, G. et al. Midgap state-based π-junctions for digital applications. Appl. Phys. Lett. 85, 1202–1204 (2004).

    Article  ADS  Google Scholar 

  10. Hilgenkamp, H. et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422, 50–53 (2003).

    Article  ADS  Google Scholar 

  11. Cleuziou, J-P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotech. 1, 53–59 (2006).

    ADS  Google Scholar 

  12. Terzioglu, E. & Beasley, M. R. Complementary Josephson junction devices and circuits: A possible new approach to superconducting electronics. IEEE Trans. Appl. Supercond. 8, 48–53 (1998).

    Article  ADS  Google Scholar 

  13. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  14. Frolov, S. M. et al. Imaging spontaneous currents in superconducting arrays of π-junctions. Nature Phys. 4, 32–36 (2008).

    Article  ADS  Google Scholar 

  15. Ryazanov, V. V., Oboznov, V. A., Veretennikov, A. V. & Rusanov, A. Y. Intrinsically frustrated superconducting array of superconductor–ferromagnet–superconductor π junctions. Phys. Rev. B 65, 020501 (2001).

    Article  Google Scholar 

  16. Frolov, S. M., Van Harlingen, D. J., Oboznov, V. A., Bolginov, V. V. & Ryazanov, V. V. Measurement of the current–phase relation of superconductor/ferromagnet/superconductor π Josephson junctions. Phys. Rev. B 70, 144505 (2004).

    Article  ADS  Google Scholar 

  17. Oboznov, V. A., Bolginov, V. V., Feofanov, A. K., Ryazanov, V. V. & Buzdin, A. I. Thickness dependence of the Josephson ground states of superconductor–ferromagnet–superconductor junctions. Phys. Rev. Lett. 96, 197003 (2006).

    Article  ADS  Google Scholar 

  18. Likharev, K. K. & Semenov, V. K. RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1, 3–28 (1991).

    Article  ADS  Google Scholar 

  19. Ortlepp, T. et al. Flip-flopping fractional flux quanta. Science 312, 1495–1497 (2006).

    Article  ADS  Google Scholar 

  20. Majer, J. B., Butcher, J. R. & Mooij, J. E. Simple phase bias for superconducting circuits. Appl. Phys. Lett. 80, 3638–3640 (2002).

    Article  ADS  Google Scholar 

  21. Balashov, D. et al. Passive phase shifter for superconducting Josephson circuits. IEEE Trans. Appl. Supercond. 17, 142–145 (2007).

    Article  ADS  Google Scholar 

  22. Mélin, R. sin(2ϕ) current–phase relation in SFS junctions with decoherence in the ferromagnet. Europhys. Lett. 69, 121–127 (2005).

    Article  ADS  Google Scholar 

  23. Hikino, S., Mori, M., Takahashi, S. & Maekawa, S. Ferromagnetic resonance induced Josephson current in a superconductor/ferromagnet/superconductor junction. J. Phys. Soc. Jpn 77, 053707 (2008).

    Article  ADS  Google Scholar 

  24. Simmonds, R. W. et al. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004).

    Article  ADS  Google Scholar 

  25. Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    Article  ADS  Google Scholar 

  26. Lisenfeld, J., Lukashenko, A., Ansmann, M., Martinis, J. M. & Ustinov, A. V. Temperature dependence of coherent oscillations in Josephson phase qubits. Phys. Rev. Lett. 99, 170504 (2007).

    Article  ADS  Google Scholar 

  27. Kato, T., Golubov, A. A. & Nakamura, Y. Decoherence in a superconducting flux qubit with a π-junction. Phys. Rev. B 76, 172502 (2007).

    Article  ADS  Google Scholar 

  28. Weides, M. et al. 0–π Josephson tunnel junctions with ferromagnetic barrier. Phys. Rev. Lett. 97, 247001 (2006).

    Article  ADS  Google Scholar 

  29. Bannykh, A. A. et al. Josephson tunnel junctions with a strong ferromagnetic interlayer. Phys. Rev. B 79, 054501 (2009).

    Article  ADS  Google Scholar 

  30. Burmistrov, E. V. et al. A planar picoamperemeter based on a superconducting quantum interferometer. J. Commun. Technol. Electr. 51, 1319–1324 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU projects EuroSQIP and MIDAS. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG), the joint grant of DFG and Russian Foundation of Basic Research, the Russian Federal Agency of Science and Innovations, and the State of Baden–Württemberg through the DFG Center for Functional Nanostructures (CFN).

Author information

Authors and Affiliations

Authors

Contributions

A.K.F., V.A.O., V.V.R., A.B.Z. and A.V.U. contributed with ideas for the experiments. A.K.F., V.A.O., V.V.B., J.L., M.K., D.B. and V.P.K. designed samples. V.A.O., A.N.R., M.K., D.B. and P.N.D. fabricated samples. A.K.F., V.V.B., V.A.O., J.L., S.P., M.K. and D.B. carried out experiments and analysed the experimental data. A.K.F. made theoretical estimations. A.V.U., J.L., V.V.R. and A.B.Z. did most of the writing. All of the authors discussed the results and the manuscript extensively.

Corresponding author

Correspondence to A. V. Ustinov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feofanov, A., Oboznov, V., Bol’ginov, V. et al. Implementation of superconductor/ferromagnet/ superconductor π-shifters in superconducting digital and quantum circuits. Nature Phys 6, 593–597 (2010). https://doi.org/10.1038/nphys1700

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing