Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Excited-state spin coherence of a single nitrogen–vacancy centre in diamond

Abstract

Nitrogen–vacancy centres in diamond are a solid-state analogue of trapped atoms, with fine structure in both the ground and excited states that may be used for advanced quantum control. These centres are promising candidates for spin-based quantum information processing1,2,3 and magnetometry4,5,6 at room temperature. Knowledge of the excited-state (ES) structure and coherence is critical to evaluating the ES as a room-temperature quantum resource, for example for a fast, optically gated swap operation with a nuclear-spin memory7. Here we report experiments that probe the ES-spin coherence of single nitrogen–vacancy centres. Using a combination of pulsed-laser excitation and nanosecond-scale microwave manipulation, we observed ES Rabi oscillations, and multipulse resonant control enabled us to study coherent ES electron/nuclear-spin interactions. To understand these processes, we developed a finite-temperature theory of ES spin dynamics that also provides a pathway towards engineering longer ES spin coherence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical relaxation of NV centres.
Figure 2: ES spin dynamics of a single NV centre.
Figure 3: Ramsey measurement of the ES hyperfine interaction.
Figure 4: ES Hahn-echo measurement of spin dephasing.

Similar content being viewed by others

References

  1. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008).

    Article  ADS  Google Scholar 

  2. Jelezko, F., Gaebel, T., Popa, I., Gruber, A. & Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004).

    Article  ADS  Google Scholar 

  3. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  4. Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Article  ADS  Google Scholar 

  5. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Article  ADS  Google Scholar 

  6. Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008).

    ADS  Google Scholar 

  7. Fuchs, G. D. et al. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101, 117601 (2008).

    Article  ADS  Google Scholar 

  8. Neumann, P. et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009).

    Article  ADS  Google Scholar 

  9. Rogers, L. J., McMurtrie, R. L., Armstrong, S., Sellars, M. J. & Manson, N. B. Time-averaging within the excited state of the nitrogen–vacancy centre in diamond. New J. Phys. 11, 063007 (2009).

    Article  ADS  Google Scholar 

  10. Tamarat, Ph. et al. Spin-flip and spin-conserving optical transitions of the nitrogen–vacancy centre in diamond. New J. Phys. 10, 045004 (2008).

    Article  ADS  Google Scholar 

  11. Batalov, A. et al. Low temperature studies of the excited-state structure of negatively charged nitrogen–vacancy color centers in diamond. Phys. Rev. Lett. 102, 195506 (2009).

    Article  ADS  Google Scholar 

  12. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  13. Fu, K. C. et al. Observation of the dynamic Jahn–Teller effect in the excited states of nitrogen–vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    Article  ADS  Google Scholar 

  14. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen–vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  ADS  Google Scholar 

  15. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1961).

    Google Scholar 

  16. Kubo, R. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn 9, 935–944 (1954).

    Article  ADS  Google Scholar 

  17. van Kampen, N. Stochastic Processes in Physics and Chemistry (Elsevier, 1992).

    MATH  Google Scholar 

  18. Shelby, R. M., Macfarlane, R. M. & Shoemaker, R. L. Two-pulse photon echo electron-nuclear double resonance of YAlO3:Pr3+. Phys. Rev. B 25, 6578–6583 (1982).

    Article  ADS  Google Scholar 

  19. Jaques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen–vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 057403 (2009).

    Article  ADS  Google Scholar 

  20. Smeltzer, B., McIntyre, J. & Childress, L. Robust control of individual nuclear spins in diamond. Phys. Rev. A 80, 050302(R) (2009).

    Article  ADS  Google Scholar 

  21. Steiner, M., Neumann, P., Beck, J., Jelezko, F. & Wrachtrup, J. Universal enhancement of the optical readout fidelity of single electron spins at nitrogen–vacancy centers in diamond. Phys. Rev. B 81, 035205 (2010).

    Article  ADS  Google Scholar 

  22. Gali, A. Identification of individual 13C isotopes of nitrogen–vacancy center in diamond by combining the polarization studies of nuclear spins and first-principles calculations. Phys. Rev. B 80, 241204(R) (2009).

    Article  ADS  Google Scholar 

  23. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  24. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    ADS  Google Scholar 

  25. Barclay, P. E., Fu, K. C., Santori, C. & Beausoleil, R. G. Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express. 17, 9588–9601 (2009).

    Article  ADS  Google Scholar 

  26. Beveratos, A. et al. Single photon quantum cryptography. Phys Rev. Lett. 89, 187901 (2002).

    Article  ADS  Google Scholar 

  27. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the AFOSR, ARO and DARPA. Work at the Ames Laboratory was supported by the Department of Energy—Basic Energy Sciences under contract No DE- AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and analysed by G.D.F., V.V.D., D.M.T., F.J.H., and D.D.A. Measurements were made by G.D.F., D.M.T., and F.J.H. Samples were designed and fabricated by G.D.F., D.M.T., F.J.H., C.D.W., T.S., and D.D.A. All authors contributed to writing the paper.

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, G., Dobrovitski, V., Toyli, D. et al. Excited-state spin coherence of a single nitrogen–vacancy centre in diamond. Nature Phys 6, 668–672 (2010). https://doi.org/10.1038/nphys1716

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing