Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct entropy determination and application to artificial spin ice

Abstract

From thermodynamic origins, the concept of entropy has expanded to a range of statistical measures of uncertainty, which may still be thermodynamically significant1,2. However, laboratory measurements of entropy continue to rely on direct measurements of heat. New technologies that can map out myriads of microscopic degrees of freedom suggest direct determination of configurational entropy by counting in systems where it is thermodynamically inaccessible, such as granular3,4,5,6,7,8 and colloidal9,10,11,12,13 materials, proteins14 and lithographically fabricated nanometre-scale arrays. Here, we demonstrate a conditional-probability technique to calculate entropy densities of translation-invariant states on lattices using limited configuration data on small clusters, and apply it to arrays of interacting nanometre-scale magnetic islands (artificial spin ice)15. Models for statistically disordered systems can be assessed by applying the method to relative entropy densities. For artificial spin ice, this analysis shows that nearest-neighbour correlations drive longer-range ones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Artificial spin-ice arrays.
Figure 2: Entropy density upper bounds for honeycomb artificial spin ice at four lattice constants as a function of the demagnetization step size ΔHext.
Figure 3: Entropy density upper bounds for square-lattice artificial spin ice.

Similar content being viewed by others

References

  1. Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  2. Leff, H. S. & Rex, A. F. (eds) Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing 2nd edn (Institute of Physics, 2003).

  3. Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  ADS  Google Scholar 

  4. Coniglio, A. & Nicodemi, M. The jamming transition of granular media. J. Phys. Condens. Matter 12, 6601–6610 (2000).

    Article  ADS  MATH  Google Scholar 

  5. O’Hern, C. S., Sibert, L. E., Liu, A. J. & Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 68, 011306 (2003).

    Article  ADS  MATH  Google Scholar 

  6. Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signatures of jamming in granular media. Nature 435, 1075–1078 (2005).

    Article  ADS  MATH  Google Scholar 

  7. Majumdar, T. S., Sperl, M., Luding, S. & Behringer, R. P. Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007).

    Article  ADS  MATH  Google Scholar 

  8. Behringer, R. P., Daniels, K. E., Majumdar, T. S. & Sperl, M. Fluctuations, correlations and transitions in granular materials: Statistical mechanics for a non-conventional system. Phil. Trans. R. Soc. A 366, 493–504 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kegel, W. K. & van Blaaderen, A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287, 290–293 (2000).

    Article  ADS  MATH  Google Scholar 

  10. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000).

    Article  ADS  Google Scholar 

  11. Cui, B., Lin, B. & Rice, S. A. Dynamical heterogeneity in a dense quasi-two-dimensional colloidal liquid. J. Chem. Phys. 114, 9142–9155 (2001).

    Article  ADS  MATH  Google Scholar 

  12. Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    Article  ADS  Google Scholar 

  13. Alsayed, A. M., Islam, M. F., Zhang, J., Collings, P. J. & Yodh, A. G. Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005).

    Article  ADS  Google Scholar 

  14. Pande, V. S., Grosberg, A. Y. & Tanaka, T. Heteropolymer freezing and design: Towards physical models of protein folding. Rev. Mod. Phys. 72, 259–314 (2000).

    Article  ADS  MATH  Google Scholar 

  15. Wang, R. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    Article  ADS  MATH  Google Scholar 

  16. Ke, X. et al. Energy minimization and ac demagnetization in a nanomagnet array. Phys. Rev. Lett. 101, 037205 (2008).

    Article  ADS  Google Scholar 

  17. Nisoli, C. et al. Ground state lost but degeneracy found: The effective thermodynamics of artificial spin ice. Phys. Rev. Lett. 98, 217203 (2007).

    Article  ADS  MATH  Google Scholar 

  18. Ritort, F. & Sollich, P. Glassy dynamics of kinetically constrained models. Adv. Phys. 52, 219–342 (2003).

    Article  ADS  MATH  Google Scholar 

  19. Janke, W. (ed.) Rugged Free Energy Landscapes (Lecture Notes in Physics, Vol. 736, Springer, 2008).

  20. Möller, G. & Moessner, R. Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. Rev. B 80, 140409(R) (2009).

    Article  ADS  Google Scholar 

  21. Tanaka, M., Saitoh, E. & Miyajima, H. Magnetic interactions in a ferromagnetic honeycomb nanoscale network. Phys. Rev. B 73, 052411 (2006).

    Article  ADS  Google Scholar 

  22. Qi, Y., Brintlinger, T. E. & Cumings, J. Direct observation of the ice rule in an artificial kagomé spin ice. Phys. Rev. B 77, 094418 (2008).

    Article  ADS  Google Scholar 

  23. Wehrl, A. General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Penrose, O. Foundations of Statistical Mechanics (Pergamon, 1970).

    MATH  Google Scholar 

  25. Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Schlijper, A. G. & Smit, B. Two-sided bounds on the free energy from local states in Monte Carlo simulations. J. Stat. Phys. 56, 247–259 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Schlijper, A. G. & van Bergen, A. R. D. Local-states method for the calculation of free energies in Monte Carlo simulations of lattice models. Phys. Rev. A 41, 1175–1178 (1990).

    Article  ADS  MATH  Google Scholar 

  28. Cover, T. M. & Thomas, J. A. Elements of Information Theory (Wiley, 1991).

    MATH  Google Scholar 

  29. Dembo, A. & Zeitouni, O. Large Deviations Techniques and Applications 2nd edn (Springer, 1998).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Army Research Office and the National Science Foundation MRSEC program (DMR-0820404) and the National Nanotechnology Infrastructure Network. We thank C. Leighton and M. Erickson for permalloy growth.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and V.H.C. conceived the initial idea of this project and kept it on track. X.K., J.L. and D.M.G. carried out the experiments and collected data. C.N. made theoretical contributions. P.E.L. analysed data and developed theory.

Corresponding author

Correspondence to Paul E. Lammert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 254 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lammert, P., Ke, X., Li, J. et al. Direct entropy determination and application to artificial spin ice. Nature Phys 6, 786–789 (2010). https://doi.org/10.1038/nphys1728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing