Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tripartite interactions between two phase qubits and a resonant cavity

Abstract

Multipartite entanglement is essential for quantum computation1 and communication2,3,4, and for fundamental tests of quantum mechanics5 and precision measurements6. It has been achieved with various forms of quantum bits (qubits), such as trapped ions7,8, photons9 and atoms passing through microwave cavities10. Quantum systems based on superconducting circuits, which are potentially more scalable, have been used to control pair-wise interactions of qubits11,12,13,14,15,16 and spectroscopic evidence for three-particle entanglement was observed17,18. Here, we report the demonstration of coherent interactions in the time domain for three directly coupled superconducting quantum systems, two phase qubits and one resonant cavity. We provide evidence for the deterministic evolution from a simple product state, through a tripartite W state, into a (bipartite) Bell state. The cavity can be thought of as a multiphoton register or an entanglement bus, and arbitrary preparation of multiphoton states in this cavity using one of the qubits19 and subsequent interactions for entanglement distribution should allow for the deterministic creation of another class of entanglement, a Greenberger–Horne–Zeilinger state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circuit and spectroscopy.
Figure 2: Demonstration of basic tripartite interactions.
Figure 3: Experimental protocol and theoretical predictions for generating generalized arbitrary single-photon tripartite evolutions.
Figure 4: Experimental demonstration of arbitrary tripartite interactions between both phase qubits and the cavity along with theoretical predictions.

Similar content being viewed by others

References

  1. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  MATH  Google Scholar 

  2. Karlsson, A. & Bourennane, M. Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Briegel, H. J., Dür, W., Cirac, J. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  MATH  Google Scholar 

  4. Hillery, M., Buzek, V. & Berthiaume, A. Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Greenberger, D. M., Horne, M. A. & Zeilinger, A. Multiparticle interferometry and the superposition principle. Phys. Today 46, 22–29 (1993).

    Article  MATH  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  MATH  Google Scholar 

  7. Leibfried, D. et al. Creation of a six-atom Schrödinger cat state. Nature 438, 639–641 (2005).

    Article  ADS  MATH  Google Scholar 

  8. Roos, C. F. et al. Control and measurement of three-qubit entangled states. Science 304, 1478–1482 (2004).

    Article  ADS  MATH  Google Scholar 

  9. Pan, J-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000).

    Article  ADS  MATH  Google Scholar 

  10. Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 (2000).

    Article  ADS  MATH  Google Scholar 

  11. Pashkin, Y. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

    Article  ADS  MATH  Google Scholar 

  12. McDermott, R. et al. Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005).

    Article  ADS  MATH  Google Scholar 

  13. Steffen, M. et al. Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  ADS  MATH  Google Scholar 

  15. DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article  ADS  MATH  Google Scholar 

  16. Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723–726 (2007).

    Article  ADS  MATH  Google Scholar 

  17. Xu, H. et al. Spectroscopy of three-particle entanglement in a macroscopic superconducting circuit. Phys. Rev. Lett. 94, 027003 (2005).

    Article  ADS  Google Scholar 

  18. Fink, J. M. et al. Dressed collective qubit states and the Tavis–Cummings model in circuit QED. Phys. Rev. Lett. 103, 083601 (2009).

    Article  ADS  MATH  Google Scholar 

  19. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  MATH  Google Scholar 

  20. Hao, C-F., Li, J-C. & Guo, G-C. Controlled dense coding using the Greenberger–Horne–Zeilinger state. Phys. Rev. A 63, 054301 (2001).

    Article  ADS  MATH  Google Scholar 

  21. Borsten, L., Dahanayake, D., Duff, M. J., Ebrahim, H. & Rubens, W. Wrapped branes as qubits. Phys. Rev. Lett. 100, 251602 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dür, W., Vidal, G. & Cirac, J. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  23. Wei, L. F., Liu, Y-x. & Nori, F. Greenberger–Horne–Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. 96, 246803 (2006).

    Article  ADS  MATH  Google Scholar 

  24. Galiautdinov, A. & Martinis, J. M. Maximally entangling tripartite protocols for Josephson phase qubits. Phys. Rev. A 78, 010305 (2008).

    Article  ADS  Google Scholar 

  25. Kim, M. D. & Cho, S. Y. Macroscopic Greenberger–Horne–Zeilinger and W states in flux qubits. Phys. Rev. B 77, 100508(R) (2008).

    Article  ADS  Google Scholar 

  26. Simmonds, R. W. et al. Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004).

    Article  ADS  MATH  Google Scholar 

  27. Tavis, M. & Cummings, F. W. Exact solution for an n-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968).

    Article  ADS  MATH  Google Scholar 

  28. Simmonds, R. W. et al. Coherent interactions between phase qubits, cavities, and TLS defects. Quant. Inform. Process. 8, 117–131 (2009).

    Article  ADS  MATH  Google Scholar 

  29. Martinis, J. M. et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005).

    Article  ADS  MATH  Google Scholar 

  30. Cooper, K. B. et al. Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout. Phys. Rev. Lett. 93, 180401 (2004).

    Article  ADS  MATH  Google Scholar 

  31. Blais, A. et al. Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007).

    Article  ADS  MATH  Google Scholar 

  32. Neeley, M. et al. Generation of three-qubit entangled states using superconducting phase qubits. Preprint at http://arxiv.org/abs/1004.4246 (2010).

  33. Dicarlo, L. et al. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Preprint at http://arxiv.org/abs/1004.4324 (2010).

Download references

Acknowledgements

This work was financially supported by NIST and in part by IARPA. M.A.S. was supported by the Academy of Finland and by the European Research Council (grant no. FP7-240387).

Author information

Authors and Affiliations

Authors

Contributions

F.A., J.I.P., M.A.S. and R.W.S. developed the experiment. F.A. carried out the experiment. J.I.P. carried out the theoretical simulations. K.C. fabricated the device. J.D.W. developed the acquisition software. All authors discussed the results and contributed to the manuscript. F.A., J.I.P. and R.W.S. wrote the manuscript.

Corresponding author

Correspondence to R. W. Simmonds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altomare, F., Park, J., Cicak, K. et al. Tripartite interactions between two phase qubits and a resonant cavity. Nature Phys 6, 777–781 (2010). https://doi.org/10.1038/nphys1731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing