Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quasiparticle lifetimes in metallic quantum-well nanostructures

Abstract

Quasiparticle lifetimes in metals as described by Fermi-liquid theory1 are essential in surface chemistry2 and determine the mean free path of hot carriers3. Relaxation of hot electrons is governed by inelastic electron–electron scattering, which occurs on femtosecond timescales owing to the large scattering phase space competing with screening effects4. Such lifetimes are widely studied by time-resolved two-photon photoemission5,6, which led to understanding of electronic decay at surfaces6,7,8. In contrast, quasiparticle lifetimes of metal bulk5,9,10,11,12 and films11,13,14,15 are not well understood because electronic transport10,16,17 leads to experimental lifetimes shorter than expected theoretically13,15,18. Here, we lift this discrepancy by investigating Pb quantum-well structures on Si(111), a two-dimensional model system19,20,21,22,23,24,25,26,27,28,29. For electronic states confined to the film by the Si bandgap we find quantitative agreement with Fermi-liquid theory and ab initio calculations4,7 for bulk Pb, which we attribute to efficient screening. For states resonant with Si bands, extra decay channels open for electron transfer to Si, resulting in lifetimes shorter than expected for bulk. Thereby we demonstrate that for understanding electronic decay in nanostructures coupling to the environment is essential, and that even for electron confinement to a few ångströms Fermi-liquid theory for bulk can remain valid.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantized band structure of Pb/Si(111) for the occupied and unoccupied density of states at the  point observed by photoemission.
Figure 2: Decay of the transient quasiparticle population in the luQWS for various N.
Figure 3: Lifetime of the luQWS as a function of Pb thickness.
Figure 4: Comparison of the measured quasiparticle lifetimes with theoretical results from FLT and the G W approximation.

Similar content being viewed by others

References

  1. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

    Book  MATH  Google Scholar 

  2. Zhu, X-Y. Electronic structure and electron dynamics at molecule–metal interfaces: Implications for molecule-based electronics. Surf. Sci. Rep. 56, 1–83 (2004).

    Article  ADS  MATH  Google Scholar 

  3. Kliewer, J. et al. Dimensionality effects in the lifetime of surface states. Science 288, 1399–1402 (2000).

    Article  ADS  MATH  Google Scholar 

  4. Chulkov, E. V. et al. Electronic excitations in metals and at metal surfaces. Chem. Rev. 106, 4160–4206 (2006).

    Article  MATH  Google Scholar 

  5. Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997).

    Article  ADS  MATH  Google Scholar 

  6. Weinelt, M. Time-resolved two-photon photoemission from metal surfaces. J. Phys. Condens. Mater. 14, R1099–R1141 (2002).

    Article  ADS  MATH  Google Scholar 

  7. Echenique, P. M. et al. Decay of electronic excitations at metal surfaces. Surf. Sci. Rep. 52, 219–317 (2004).

    Article  ADS  MATH  Google Scholar 

  8. Güdde, J., Rohleder, M., Meier, T., Koch, S. W. & Höfer, U. Time-resolved investigation of coherently controlled electric currents at a metal surface. Science 318, 1287–1291 (2007).

    Article  ADS  Google Scholar 

  9. Schmuttenmaer, C. A. et al. Time-resolved two-photon photoemission from Cu(100): Energy dependence of electron relaxation. Phys. Rev. B 50, 8957–8960 (1994).

    Article  ADS  MATH  Google Scholar 

  10. Knoesel, E., Hotzel, A. & Wolf, M. Ultrafast dynamics of hot electrons and holes in copper: Excitation, energy relaxation, and transport effects. Phys. Rev. B 57, 12812–12824 (1998).

    Article  ADS  MATH  Google Scholar 

  11. Cao, J., Gao, Y., Elsayed-Ali, H. E., Miller, R. J. D. & Mantell, D. A. Femtosecond photoemission study of ultrafast electron dynamics in single-crystal Au(111) films. Phys. Rev. B 58, 10948–10952 (1998).

    Article  ADS  Google Scholar 

  12. Gerlach, A. et al. Lifetime of d holes at Cu surfaces: Theory and experiment. Phys. Rev. B 64, 085423 (2001).

    Article  ADS  MATH  Google Scholar 

  13. Ogawa, S., Nagano, H. & Petek, H. Optical intersubband transitions and femtosecond dynamics in Ag/Fe(100) quantum wells. Phys. Rev. Lett. 88, 116801 (2002).

    Article  ADS  MATH  Google Scholar 

  14. Wegner, D., Bauer, A. & Kaindl, G. Electronic structure and dynamics of quantum-well states in thin Yb metal films. Phys. Rev. Lett. 94, 126804 (2005).

    Article  ADS  MATH  Google Scholar 

  15. Zhukov, V. P. et al. Excited electron dynamics in bulk ytterbium: Time-resolved two-photon photoemission and GW+T ab initio calulations. Phys. Rev. B 76, 193107 (2007).

    Article  ADS  Google Scholar 

  16. Aeschlimann, M. et al. Transport and dynamics of optically excited electrons in metals. Appl. Phys. A 71, 485–491 (2000).

    Article  ADS  MATH  Google Scholar 

  17. Lisowski, M., Loukakos, P. A., Bovensiepen, U. & Wolf, M. Femtosecond dynamics and transport of optically excited electrons in epitaxial Cu films on Si(111)-7×7. Appl. Phys. A 79, 739–741 (2004).

    Article  ADS  Google Scholar 

  18. Bauer, M., Pawlik, S. & Aeschlimann, M. Electron dynamics of aluminum investigated by means of time-resolved photoemission. Proc. SPIE 3272, 201–210 (1998).

    Article  ADS  MATH  Google Scholar 

  19. Wei, C. M. & Chou, M. Y. Theory of quantum size effects in thin Pb(111) films. Phys. Rev. B 66, 233408 (2002).

    Article  ADS  MATH  Google Scholar 

  20. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915–1917 (2004).

    Article  ADS  MATH  Google Scholar 

  21. Upton, M. H., Wei, C. M., Chou, M. Y., Miller, T. & Chiang, T-C. Thermal stability and electronic structure of atomically uniform Pb films on Si(111). Phys. Rev. Lett. 93, 026802 (2004).

    Article  ADS  Google Scholar 

  22. Zhang, Y-F. et al. Band structure and oscillatory electron–phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 95, 096802 (2005).

    Article  ADS  Google Scholar 

  23. Dil, J. H., Kim, J. W., Kampen, T., Horn, K. & Ettema, A. R. H. F. Electron localization in metallic quantum wells: Pb versus In on Si(111). Phys. Rev. B 73, 161308 (2006).

    Article  ADS  Google Scholar 

  24. Kirchmann, P. S., Wolf, M., Dil, J. H., Horn, K. & Bovensiepen, U. Quantum size effects in Pb/Si(111) investigated by laser-induced photoemission. Phys. Rev. B 76, 075406 (2007).

    Article  ADS  Google Scholar 

  25. Shanenko, A. A., Croitoru, M. D. & Peeters, F. M. Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: Numerical solution of the Bogoliubov–de Gennes equations. Phys. Rev. B 75, 014519 (2007).

    Article  ADS  MATH  Google Scholar 

  26. Hong, I-P. et al. Decay mechanisms of excited electrons in quantum-well states of ultrathin Pb islands grown on Si(111): Scanning tunneling spectroscopy and theory. Phys. Rev. B 80, 081409 (2009).

    Article  ADS  Google Scholar 

  27. Qin, S., Kim, J., Niu, Q. & Shih, C-K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  ADS  MATH  Google Scholar 

  28. Brun, C. et al. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 102, 207002 (2009).

    Article  ADS  MATH  Google Scholar 

  29. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nature Phys. 6, 104–108 (2010).

    Article  ADS  MATH  Google Scholar 

  30. Kirchmann, P. S. & Bovensiepen, U. Ultrafast electron dynamics in Pb/Si(111) investigated by two-photon photoemission. Phys. Rev. B 78, 035437 (2008).

    Article  ADS  Google Scholar 

  31. Kawakami, R. K. et al. Quantum-well states in copper thin films. Nature 398, 132–134 (1999).

    Article  ADS  MATH  Google Scholar 

  32. Paggel, J. J., Miller, T. & Chiang, T-C. Quantum-well states as Fabry–Pérot modes in a thin-film electron interferometer. Science 283, 1709–1711 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Brun for discussions and acknowledge support from and discussions with M. Wolf. This work has been funded by the Deutsche Forschungsgemeinschaft through BO 1823/2 and by the Ministerio de Ciencia y Tecnologia (grant FIS2007-66711-C02-01). P.S.K. acknowledges support by the International Max-Planck Research School ‘Complex Surfaces in Material Science’.

Author information

Authors and Affiliations

Authors

Contributions

P.S.K. and L.R. carried out the experiments and analysed the data; U.B. designed and coordinated the experiment; X.Z. and V.M.S. carried out the calculations; P.S.K., U.B., and E.V.C. wrote the paper; all authors commented on the manuscript.

Corresponding author

Correspondence to Uwe Bovensiepen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchmann, P., Rettig, L., Zubizarreta, X. et al. Quasiparticle lifetimes in metallic quantum-well nanostructures. Nature Phys 6, 782–785 (2010). https://doi.org/10.1038/nphys1735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing