Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualization of charge transport through Landau levels in graphene

Abstract

Band bending and the associated spatially inhomogeneous population of Landau levels play a central role in the physics of the quantum Hall effect (QHE) by constraining the pathways for charge-carrier transport and scattering1. Recent progress in understanding such effects in low-dimensional carrier gases in conventional semiconductors has been achieved by real-space mapping using local probes2,3. Here, we use spatially resolved photocurrent measurements in the QHE regime to study the correlation between the distribution of Landau levels and the macroscopic transport characteristics in graphene. Spatial maps show that the net photocurrent is determined by hot carriers transported to the periphery of the graphene channel, where QHE edge states provide efficient pathways for their extraction to the contacts. The photocurrent is sensitive to the local filling factor, which allows us to reconstruct the local charge density in the entire conducting channel of a graphene device.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photocurrent measurements on graphene devices.
Figure 2: Spatial photocurrent maps for different gate voltages at B=9 T.
Figure 3: VG dependence of photocurrent across the device, and photocurrent-generation mechanism.
Figure 4: Carrier relaxation and photocurrent collection in graphene devices in the QHE regime.

Similar content being viewed by others

References

  1. Chakraborty, T. & Pietiläinen, P. The Quantum Hall Effects (Springer, 1995).

    Book  Google Scholar 

  2. McCormick, K. L., Woodside, M. T., Huang, M., Wu, M. & McEuen, P. L. Scanned potential microscopy of edge and bulk currents in the quantum Hall regime. Phys. Rev. B 59, 4654–4657 (1999).

    Article  ADS  Google Scholar 

  3. Ahlswede, E., Weitz, P., Weis, J., von Klitzing, K. & Eberl, K. Hall potential profiles in the quantum Hall regime measured by a scanning force microscope. Phys. B Condens. Matter 298, 562–566 (2001).

    Article  ADS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  5. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  6. Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science 317, 638–641 (2007).

    Article  ADS  Google Scholar 

  7. Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  ADS  Google Scholar 

  8. Ki, D. K., Jo, S. & Lee, H. J. Observation of chiral quantum-Hall edge states in graphene. Appl. Phys. Lett. 94, 162113 (2009).

    Article  ADS  Google Scholar 

  9. Buttiker, M. Absence of backscattering in the quantum Hall-effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  10. Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).

    Article  ADS  Google Scholar 

  11. Martin, J. et al. The nature of localization in graphene under quantum Hall conditions. Nature Phys. 5, 669–674 (2009).

    Article  ADS  Google Scholar 

  12. Connolly, M. R. et al. Scanning gate microscopy of current-annealed single layer graphene. Appl. Phys. Lett. 96, 113501–113503.

  13. Williams, J. R., Abanin, D. A., DiCarlo, L., Levitov, L. S. & Marcus, C. M. Quantum Hall conductance of two-terminal graphene devices. Phys. Rev. B 80, 045408 (2009).

    Article  ADS  Google Scholar 

  14. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  ADS  Google Scholar 

  15. Abanin, D. A. & Levitov, L. S. Conformal invariance and shape-dependent conductance of graphene samples. Phys. Rev. B 78, 035416 (2008).

    Article  ADS  Google Scholar 

  16. Lee, E. J. H., Balasubramanian, K., Weitz, R.T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  ADS  Google Scholar 

  17. Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  ADS  Google Scholar 

  18. Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article  ADS  Google Scholar 

  19. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  20. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  Google Scholar 

  21. Vanharen, R. J. F., Delange, W., Blom, F. A. P. & Wolter, J. H. Imaging of edge channels in the integer quantum Hall regime by the lateral photoelectric effect. Phys. Rev. B 52, 5760–5766 (1995).

    Article  ADS  Google Scholar 

  22. Shashkin, A. A. et al. Hall photovoltage imaging of the edge of a quantum Hall device. Phys. Rev. Lett. 79, 5114–5117 (1997).

    Article  ADS  Google Scholar 

  23. Vanharen, R. J. F., Blom, F. A. P. & Wolter, J. H. Direct observation of edge channels in the integer quantum Hall regime. Phys. Rev. Lett. 74, 1198–1201 (1995).

    Article  ADS  Google Scholar 

  24. Ioannou, D. E. & Dimitriadis, C. A. A SEM-EBIC minority-carrier diffusion-length measurement technique. IEEE Trans. Electr. Devices 29, 445–450 (1982).

    Article  ADS  Google Scholar 

  25. Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).

    Article  ADS  Google Scholar 

  26. Chklovskii, D. B., Matveev, K. A. & Shklovskii, B. I. Ballistic conductance of interacting electrons in the quantum Hall regime. Phys. Rev. B 47, 12605–12617 (1993).

    Article  ADS  Google Scholar 

  27. Kicin, S. et al. Local backscattering in the quantum Hall regime. Phys. Rev. B 70, 205302 (2004).

    Article  ADS  Google Scholar 

  28. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    Article  ADS  Google Scholar 

  29. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  30. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    ADS  Google Scholar 

Download references

Acknowledgements

Work carried out under the auspices of the US Department of Energy under contract DE-AC02-98CH1-886. Y.Z. acknowledges financial support from NSF contract DMR-0705131.

Author information

Authors and Affiliations

Contributions

P.S., E.S. and G.N. designed the study; G.N. carried out the experiments and analysed the data; Y.Z. and L.Z. provided samples; G.N., P.S. and E.S. wrote the paper; all authors commented on the manuscript.

Corresponding author

Correspondence to P. Sutter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazin, G., Zhang, Y., Zhang, L. et al. Visualization of charge transport through Landau levels in graphene. Nature Phys 6, 870–874 (2010). https://doi.org/10.1038/nphys1745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1745

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing