Abstract
Band bending and the associated spatially inhomogeneous population of Landau levels play a central role in the physics of the quantum Hall effect (QHE) by constraining the pathways for charge-carrier transport and scattering1. Recent progress in understanding such effects in low-dimensional carrier gases in conventional semiconductors has been achieved by real-space mapping using local probes2,3. Here, we use spatially resolved photocurrent measurements in the QHE regime to study the correlation between the distribution of Landau levels and the macroscopic transport characteristics in graphene. Spatial maps show that the net photocurrent is determined by hot carriers transported to the periphery of the graphene channel, where QHE edge states provide efficient pathways for their extraction to the contacts. The photocurrent is sensitive to the local filling factor, which allows us to reconstruct the local charge density in the entire conducting channel of a graphene device.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Chakraborty, T. & Pietiläinen, P. The Quantum Hall Effects (Springer, 1995).
McCormick, K. L., Woodside, M. T., Huang, M., Wu, M. & McEuen, P. L. Scanned potential microscopy of edge and bulk currents in the quantum Hall regime. Phys. Rev. B 59, 4654–4657 (1999).
Ahlswede, E., Weitz, P., Weis, J., von Klitzing, K. & Eberl, K. Hall potential profiles in the quantum Hall regime measured by a scanning force microscope. Phys. B Condens. Matter 298, 562–566 (2001).
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science 317, 638–641 (2007).
Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 99, 166804 (2007).
Ki, D. K., Jo, S. & Lee, H. J. Observation of chiral quantum-Hall edge states in graphene. Appl. Phys. Lett. 94, 162113 (2009).
Buttiker, M. Absence of backscattering in the quantum Hall-effect in multiprobe conductors. Phys. Rev. B 38, 9375–9389 (1988).
Chklovskii, D. B., Shklovskii, B. I. & Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B 46, 4026–4034 (1992).
Martin, J. et al. The nature of localization in graphene under quantum Hall conditions. Nature Phys. 5, 669–674 (2009).
Connolly, M. R. et al. Scanning gate microscopy of current-annealed single layer graphene. Appl. Phys. Lett. 96, 113501–113503.
Williams, J. R., Abanin, D. A., DiCarlo, L., Levitov, L. S. & Marcus, C. M. Quantum Hall conductance of two-terminal graphene devices. Phys. Rev. B 80, 045408 (2009).
Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).
Abanin, D. A. & Levitov, L. S. Conformal invariance and shape-dependent conductance of graphene samples. Phys. Rev. B 78, 035416 (2008).
Lee, E. J. H., Balasubramanian, K., Weitz, R.T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).
Xia, F. N. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).
Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: A scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).
Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).
Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).
Vanharen, R. J. F., Delange, W., Blom, F. A. P. & Wolter, J. H. Imaging of edge channels in the integer quantum Hall regime by the lateral photoelectric effect. Phys. Rev. B 52, 5760–5766 (1995).
Shashkin, A. A. et al. Hall photovoltage imaging of the edge of a quantum Hall device. Phys. Rev. Lett. 79, 5114–5117 (1997).
Vanharen, R. J. F., Blom, F. A. P. & Wolter, J. H. Direct observation of edge channels in the integer quantum Hall regime. Phys. Rev. Lett. 74, 1198–1201 (1995).
Ioannou, D. E. & Dimitriadis, C. A. A SEM-EBIC minority-carrier diffusion-length measurement technique. IEEE Trans. Electr. Devices 29, 445–450 (1982).
Kelzenberg, M. D. et al. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8, 710–714 (2008).
Chklovskii, D. B., Matveev, K. A. & Shklovskii, B. I. Ballistic conductance of interacting electrons in the quantum Hall regime. Phys. Rev. B 47, 12605–12617 (1993).
Kicin, S. et al. Local backscattering in the quantum Hall regime. Phys. Rev. B 70, 205302 (2004).
Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Acknowledgements
Work carried out under the auspices of the US Department of Energy under contract DE-AC02-98CH1-886. Y.Z. acknowledges financial support from NSF contract DMR-0705131.
Author information
Authors and Affiliations
Contributions
P.S., E.S. and G.N. designed the study; G.N. carried out the experiments and analysed the data; Y.Z. and L.Z. provided samples; G.N., P.S. and E.S. wrote the paper; all authors commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 272 kb)
Rights and permissions
About this article
Cite this article
Nazin, G., Zhang, Y., Zhang, L. et al. Visualization of charge transport through Landau levels in graphene. Nature Phys 6, 870–874 (2010). https://doi.org/10.1038/nphys1745
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1745
This article is cited by
-
Photocurrent as a multiphysics diagnostic of quantum materials
Nature Reviews Physics (2023)
-
Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors
Nature Communications (2018)
-
Photo-Nernst current in graphene
Nature Physics (2016)


