Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A holey-structured metamaterial for acoustic deep-subwavelength imaging

Abstract

For classical waves such as light or sound, diffraction sets a natural limit on how finely the details of an object can be recorded on its image. Recently, various optical superlenses based on the metamaterials concept have shown the possibility of overcoming the diffraction limit1,2,3,4,5,6,7. Similar two-dimensional (2D) acoustic hyperlens designs have also been explored8,9,10. Here we demonstrate a 3D holey-structured metamaterial that achieves acoustic imaging down to a feature size of λ/50. The evanescent field components of a subwavelength object are efficiently transmitted through the structure as a result of their strong coupling with Fabry–Pérot resonances inside the holey plate. This capability of acoustic imaging at a very deep-subwavelength scale may open the door for a broad range of applications, including medical ultrasonography, underwater sonar and ultrasonic non-destructive evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Holey-structured metamaterial for deep-subwavelength acoustic imaging.
Figure 2: Dispersion relations.
Figure 3: Simulation and experimental images of two square dots.
Figure 4: Simulation and experimental imaging of deep-subwavelength-sized letter E.

Similar content being viewed by others

References

  1. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  2. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  3. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  Google Scholar 

  4. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  5. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

    Article  Google Scholar 

  6. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  ADS  Google Scholar 

  7. Liu, Z. et al. Far-field optical superlens. Nano Lett. 7, 403–408 (2007).

    Article  ADS  Google Scholar 

  8. Guenneau, S., Movchan, A., Pétursson, G. & Ramakrishna, S. A. Acoustic meta-materials for sound focussing and confinement. New J. Phys. 9, 1367–2630 (2007).

    Article  Google Scholar 

  9. Ao, X. & Chan, C. T. Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Phys. Rev. E 77, 025601(R) (2008).

    Article  ADS  Google Scholar 

  10. Li, J., Fok, L., Yin, X., Bartal, G. & Zhang, X. Experimental demonstration of an acoustic magnifying hyperlens. Nature Mater. 8, 931–934 (2009).

    Article  ADS  Google Scholar 

  11. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  12. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  ADS  Google Scholar 

  13. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006).

    Article  ADS  Google Scholar 

  14. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  15. Fang, N. et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

    Article  ADS  Google Scholar 

  16. Zhang, S., Yin, L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

    Article  ADS  Google Scholar 

  17. de Rosny, J. & Fink, M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002).

    Article  ADS  Google Scholar 

  18. Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  19. Yang, S. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  ADS  Google Scholar 

  20. Zhang, X. D. & Liu, Z. Y. Negative refraction of acoustic waves in two-dimensional phononic crystals. Appl. Phys. Lett. 85, 341–343 (2004).

    Article  ADS  Google Scholar 

  21. Sukhovich, A., Jing, L. & Page, J. H. Negative refraction and focusing of ultrasound in two-dimensional phononic crystals. Phys. Rev. B 77, 014301 (2008).

    Article  ADS  Google Scholar 

  22. Sukhovich, A. et al. Experimental and theoretical evidence for subwavelength imaging in phononic crystals. Phys. Rev. Lett. 102, 154301 (2009).

    Article  ADS  Google Scholar 

  23. He, Z., Cai, F., Ding, Y. & Liu, Z. Subwavelength imaging of acoustic waves by a canalization mechanism in a two-dimensional phononic crystal. Appl. Phys. Lett. 93, 233503 (2008).

    Article  ADS  Google Scholar 

  24. Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2002).

    Article  ADS  Google Scholar 

  25. Yang, S. et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

    Article  ADS  Google Scholar 

  26. Ke, M. et al. Flat superlens by using negative refraction in two-dimensional phononic crystals. Solid State Commun. 142, 177–180 (2007).

    Article  ADS  Google Scholar 

  27. Jung, J., Garcia-Vidal, F. J., Martin-Moreno, L. & Pendry, J. B. Holey metal films make perfect endoscopes. Phys. Rev. B 79, 153407 (2009).

    Article  ADS  Google Scholar 

  28. Belov, P. A., Simovski, C. R. & Ikonen, P. Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 71, 193105 (2005).

    Article  ADS  Google Scholar 

  29. Wiltshire, M. C. K., Hajnal, J., Pendry, J. B., Edwards, D. & Stevens, C. Metamaterial endoscope for magnetic field transfer: Near field imaging with magnetic wires. Opt. Expr. 11, 709–715 (2003).

    Article  ADS  Google Scholar 

  30. Belov, P. A. & Silveirinha, M. G. Resolution of subwavelength transmission devices formed by a wire medium. Phys. Rev. E 73, 056607 (2006).

    Article  ADS  Google Scholar 

  31. Silveirinha, M. G., Belov, P. A. & Simovski, C. R. Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods. Opt. Lett. 33, 1726–1728 (2008).

    Article  ADS  Google Scholar 

  32. Shvets, G., Trendafilov, S., Pendry, J. B. & Sarychev, A. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays. Phys. Rev. Lett. 99, 053903 (2007).

    Article  ADS  Google Scholar 

  33. Kawata, S., Ono, A. & Verma, P. Subwavelength colour imaging with a metallic nanolens. Nature Photon. 2, 438–442 (2008).

    Article  Google Scholar 

  34. Lu, M. et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures. Phys. Rev. Lett. 99, 174301 (2007).

    Article  ADS  Google Scholar 

  35. Christensen, J., Martin-Moreno, L. & Garcia-Vidal, F. J. Theory of resonant acoustic transmission through subwavelength apertures. Phys. Rev. Lett. 101, 014301 (2008).

    Article  ADS  Google Scholar 

  36. Estrada, H. et al. Extraordinary sound screening in perforated plates. Phys. Rev. Lett. 101, 084302 (2008).

    Article  ADS  Google Scholar 

  37. Zhou, Y. et al. Acoustic surface evanescent wave and its dominant contribution to extraordinary acoustic transmission and collimation of sound. Phys. Rev. Lett. 104, 164301 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially financially supported by the Spanish Ministry of Science under projects MAT2008-06609-C02 and CSD2007-046-Nanolight.es. J.Z. and X.Z. acknowledge support from the US Office of Naval Research (grant number N00014-07-1-0626). We thank M. Nesterov for conducting the finite-element method simulations on wire arrays and holey plates presented in the Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

F.J.G-V., J.J. and L.M-M. developed the idea of using holey films for deep-subwavelength imaging. J.C. and J.Z. devised the acoustic structure. J.Z., X.Y., L.F. and X.Z. designed and carried out the experiments. J.C. conducted the numerical simulations. J.Z., X.Z., L.M-M. and F.J.G-V. wrote the manuscript and J.C., J.J., X.Y. and L.F. participated in the revisions. F.J.G-V. and X.Z. conceived and led the project.

Corresponding authors

Correspondence to X. Zhang or F. J. Garcia-Vidal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Christensen, J., Jung, J. et al. A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nature Phys 7, 52–55 (2011). https://doi.org/10.1038/nphys1804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing