Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Andreev bound states in supercurrent-carrying carbon nanotubes revealed

This article has been updated

Abstract

Carbon nanotubes (CNTs) are not intrinsically superconducting but they can carry a supercurrent when connected to superconducting electrodes1,2,3,4. This supercurrent is mainly transmitted by discrete entangled electron–hole states confined to the nanotube, called Andreev bound states (ABS). These states are a key concept in mesoscopic superconductivity as they provide a universal description of Josephson-like effects in quantum-coherent nanostructures (for example molecules, nanowires, magnetic or normal metallic layers) connected to superconducting leads5. We report here the first tunnelling spectroscopy of individually resolved ABS, in a nanotube–superconductor device. Analysing the evolution of the ABS spectrum with a gate voltage, we show that the ABS arise from the discrete electronic levels of the molecule and that they reveal detailed information about the energies of these levels, their relative spin orientation and the coupling to the leads. Such measurements hence constitute a powerful new spectroscopic technique capable of elucidating the electronic structure of CNT-based devices, including those with well-coupled leads. This is relevant for conventional applications (for example, superconducting or normal transistors, superconducting quantum interference devices3 (SQUIDs)) and quantum information processing (for example, entangled electron pair generation6,7, ABS-based qubits8). Finally, our device is a new type of d.c.-measurable SQUID.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of ABS and experimental set-up.
Figure 2: Flux dependence of the ABS.
Figure 3: Gate dependence of the ABS.
Figure 4: Details of the gate and phase dependence of the DOS.

Similar content being viewed by others

Change history

  • 17 November 2010

    In the version of this Letter originally published online, there were several errors in Figure 1 and 'ϕ=(2e/h)Φ' should have read 'ϕ=(2e/)Φ' in the fourth paragraph of the text. These errors have now been corrected in all versions of the Letter.

References

  1. Kasumov, A. Y. et al. Supercurrents through single-walled carbon nanotubes. Science 284, 1508–1511 (1999).

    Article  ADS  Google Scholar 

  2. Jarillo-Herrero, P., van Dam, J. A. & Kouwenhoven, L. P. Quantum supercurrent transistors in carbon nanotubes. Nature 439, 953–956 (2006).

    Article  ADS  Google Scholar 

  3. Cleuziou, J. P., Wernsdorfer, W., Bouchiat, V., Ondarcuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nature Nanotechnol. 1, 53–59 (2006).

    Article  ADS  Google Scholar 

  4. Pallecchi, E., Gaass, M., Ryndyk, D. A. & Strunk, C. Carbon nanotube Josephson junctions with Nb contacts. Appl. Phys. Lett. 93, 072501 (2008).

    Article  ADS  Google Scholar 

  5. Beenakker, C. W. J. in Transport Phenomena in Mesoscopic Systems (eds Fukuyama, H. & Ando, T.) (Springer, 1992).

    Google Scholar 

  6. Recher, P., Sukhorukov, E. V. & Loss, D. Andreev tunneling, Coulomb blockade, and resonant transport of nonlocal spin-entangled electrons. Phys. Rev. B 63, 165314 (2001).

    Article  ADS  Google Scholar 

  7. Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  ADS  Google Scholar 

  8. Zazunov, A., Shumeiko, V., Bratus’, E., Lantz, J. & Wendin, G. Andreev level qubit. Phys. Rev. Lett. 90, 087003 (2003).

    Article  ADS  Google Scholar 

  9. Kulik, I. Macroscopic quantization and proximity effect in S–N–S junctions. Sov. Phys. JETP-USSR 30, 944–947 (1970).

    ADS  Google Scholar 

  10. Della Rocca, M. L. et al. Measurement of the current-phase relation of superconducting atomic contacts. Phys. Rev. Lett. 99, 127005 (2007).

    Article  ADS  Google Scholar 

  11. Fischer, Ø., Kugler, M., Maggio-Aprile, I., Berthod, C. & Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys. 79, 353–419 (2007).

    Article  ADS  Google Scholar 

  12. Chen, Y., Dirks, T., Al-Zoubi, G., Birge, N. O. & Mason, N. Nonequilibrium tunneling spectroscopy in carbon nanotubes. Phys. Rev. Lett. 102, 036804 (2009).

    Article  ADS  Google Scholar 

  13. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  14. Buitelaar, M. R., Nussbaumer, T. & Schönenberger, C. Quantum dot in the Kondo regime coupled to superconductors. Phys. Rev. Lett. 89, 256801 (2002).

    Article  ADS  Google Scholar 

  15. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  16. Glazman, L. I. & Matveev, K. A. Resonant Josephson current through Kondo impurities in a tunnel barrier. JETP Lett. 49, 659–662 (1989).

    ADS  Google Scholar 

  17. Spivak, B. I. & Kivelson, S. A. Negative local superfluid densities: The difference between dirty superconductors and dirty Bose liquids. Phys. Rev. B 43, 3740–3743 (1991).

    Article  ADS  Google Scholar 

  18. Fazio, R., Hekking, F. W. J. & Odintsov, A. A. Josephson current through a Luttinger liquid. Phys. Rev. Lett. 74, 1843–1846 (1995).

    Article  ADS  Google Scholar 

  19. Caux, J., Saleur, H. & Siano, F. Josephson current in Luttinger liquid-superconductor junctions. Phys. Rev. Lett. 88, 106402 (2002).

    Article  ADS  Google Scholar 

  20. Dell’Anna, L., Zazunov, A., Egger, R. & Martin, T. Josephson current through a quantum dot with spin-orbit coupling. Phys. Rev. B 75, 085305 (2007).

    Article  ADS  Google Scholar 

  21. Dolcini, F. & Dell’Anna, L. Multiple Andreev reflections in a quantum dot coupled to superconducting leads: Effect of spin–orbit coupling. Phys. Rev. B 78, 024518 (2008).

    Article  ADS  Google Scholar 

  22. Zazunov, A., Egger, R., Jonckheere, T. & Martin, T. Anomalous Josephson current through a spin–orbit coupled quantum dot. Phys. Rev. Lett. 103, 147004 (2009).

    Article  ADS  Google Scholar 

  23. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nature Phys. 6, 254–259 (2010).

    Article  ADS  Google Scholar 

  24. Yoshioka, T. & Ohashi, Y. Numerical renormalization group studies on single impurity Anderson model in superconductivity: A unified treatment of magnetic, nonmagnetic impurities, and resonance scattering. J. Phys. Soc. Jpn 69, 1812–1823 (2000).

    Article  ADS  Google Scholar 

  25. Vecino, E., Martı´n-Rodero, A. & Levy Yeyati, A. Josephson current through a correlated quantum level: Andreev states and pi junction behavior. Phys. Rev. B 68, 035105 (2003).

    Article  ADS  Google Scholar 

  26. Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).

    Article  ADS  Google Scholar 

  27. Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).

    Article  ADS  Google Scholar 

  28. Dirks, T. et al. Andreev bound state spectroscopy in a graphene quantum dot. Preprint at http://arxiv.org/abs/1005.2749 (2010).

  29. Eichler, A. et al. Even–odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99, 126602 (2007).

    Article  ADS  Google Scholar 

  30. Grove-Rasmussen, K. et al. Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Phys. Rev. B 79, 134518 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by ANR project ANR-07-BLAN-0240 SEMAFAET, C’Nano project SPLONA and Spanish MICINN under contracts NAN2007-29366 and FIS2008-04209. The authors gratefully acknowledge discussions with the Quantronics group, O. Auslaender, J. C. Cuevas, R. Egger, M. Grifoni, T. Kontos, H. le Sueur, A. Martín-Rodero, P. Simon and C. Strunk.

Author information

Authors and Affiliations

Authors

Contributions

J-D.P. and C.Q.H.L. fabricated the sample. J-D.P., C.Q.H.L. and P.J. designed and carried out the experiment. J-D.P., C.Q.H.L., P.J., C.B. and A.L.Y. analysed the data and wrote the paper. P.M. provided the equipment for the nanotube synthesis.

Corresponding author

Correspondence to P. Joyez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pillet, JD., Quay, C., Morfin, P. et al. Andreev bound states in supercurrent-carrying carbon nanotubes revealed. Nature Phys 6, 965–969 (2010). https://doi.org/10.1038/nphys1811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1811

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing