Abstract
A quantum memory for light is a key element for the realization of future quantum information networks1,2,3. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing4,5,6. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).
Ralph, T. C. & Lam, P. K. A bright future for quantum communications. Nature Photon. 3, 671–673 (2009).
Furusawa, A. & Takei, N. Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep. 443, 97–119 (2006).
Reid, M. D. et al. The Einstein–Podolsky–Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).
Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom-light quantum interface. Adv. At. Mol. Opt. Phys. 54, 81–130 (2007).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).
Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).
Hosseini, M. et al. Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009).
Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).
Takahashi, H. et al. Entanglement distillation from Gaussian input states. Nature Photon. 4, 178–181 (2010).
Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).
Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).
Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).
Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).
Sangouard, N. et al. Quantum repeaters with entangled coherent states. Preprint at http://arxiv.org/abs/0912.3871 (2010).
Browne, D. E., Eisert, J., Scheel, S. & Plenio, M. B. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).
Gu, M., Weedbrook, C., Menicucci, N. C., Ralph, T. C. & van Loock, P. Quantum computing with continuous.variable clusters. Phys. Rev. A 79, 062318 (2009).
Lamoureux, L. P., Brainis, E., Amans, D., Barrett, J. & Massar, S. Provably secure experimental quantum bit-string generation. Phys. Rev. Lett. 94, 050503 (2005).
Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).
Marino, A. M., Pooser, R. C., Boyer, V. & Lett, P. D. Tunable delay of Einstein–Podolsky–Rosen entanglement. Nature 457, 859–862 (2009).
Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).
Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008).
Adesso, G. & Chiribella, G. Quantum benchmark for teleportation and storage of squeezed states. Phys. Rev. Lett. 100, 170503 (2008).
Owari, M., Plenio, M. B., Polzik, E. S., Serafini, A. & Wolf, M. M. Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states. New J. Phys. 10, 113014 (2008).
Calsamiglia, J., Aspachs, M., Munoz-Tapia, R. & Bagan, E. Phys. Rev. A 79, 050301 (2009).
Duan, L., Giedke, G., Cirac, J. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev.Lett. 84, 2722–2725 (2000).
Schori, C., Sørensen, J. L. & Polzik, E. S. Narrowband frequency tunable source of entangled light. Phys. Rev. A 66, 033802 (2002).
Wasilewski, W. et al. Single mode quadrature entangled light from room temperature atomic vapour. Opt. Express 17, 14444–14457 (2009).
Acknowledgements
This work was supported by EU projects QESSENCE, HIDEAS, CORNER, COMPAS, EMALI and COQUIT.
Author information
Authors and Affiliations
Contributions
Experimental group: K.J., W.W., H.K., T.F., B.M.N. and E.S.P. Calculation of the classical benchmark: M.O., M.B.P., A.S. and M.M.W.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 300 kb)
Rights and permissions
About this article
Cite this article
Jensen, K., Wasilewski, W., Krauter, H. et al. Quantum memory for entangled continuous-variable states. Nature Phys 7, 13–16 (2011). https://doi.org/10.1038/nphys1819
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1819
This article is cited by
-
Interface between picosecond and nanosecond quantum light pulses
Nature Photonics (2023)
-
High-performance cavity-enhanced quantum memory with warm atomic cell
Nature Communications (2022)
-
Idler-free multi-channel discrimination via multipartite probe states
npj Quantum Information (2021)
-
Room-temperature single-photon source with near-millisecond built-in memory
Nature Communications (2021)
-
Remote quantum entanglement between two micromechanical oscillators
Nature (2018)