Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum memory for entangled continuous-variable states

Abstract

A quantum memory for light is a key element for the realization of future quantum information networks1,2,3. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing4,5,6. We store an extensive alphabet of two-mode 6.0 dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5 m, one for each mode, with a memory time of 1 ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52±0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up and pulse sequence.
Figure 2: Fidelities.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nature Photon. 3, 706–714 (2009).

    ADS  Google Scholar 

  3. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  4. Ralph, T. C. & Lam, P. K. A bright future for quantum communications. Nature Photon. 3, 671–673 (2009).

    Article  ADS  Google Scholar 

  5. Furusawa, A. & Takei, N. Quantum teleportation for continuous variables and related quantum information processing. Phys. Rep. 443, 97–119 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  6. Reid, M. D. et al. The Einstein–Podolsky–Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  7. Sherson, J., Julsgaard, B. & Polzik, E. S. Deterministic atom-light quantum interface. Adv. At. Mol. Opt. Phys. 54, 81–130 (2007).

    Article  ADS  Google Scholar 

  8. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  9. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557–560 (2006).

    Article  ADS  Google Scholar 

  10. Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502 (2008).

    Article  ADS  Google Scholar 

  11. Hosseini, M. et al. Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009).

    Article  ADS  Google Scholar 

  12. Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  13. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  14. Takahashi, H. et al. Entanglement distillation from Gaussian input states. Nature Photon. 4, 178–181 (2010).

    Article  ADS  Google Scholar 

  15. Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).

    Article  ADS  Google Scholar 

  16. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  17. Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).

    Article  ADS  Google Scholar 

  18. Brask, J. B., Rigas, I., Polzik, E. S., Andersen, U. L. & Sørensen, A. S. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).

    Article  ADS  Google Scholar 

  19. Sangouard, N. et al. Quantum repeaters with entangled coherent states. Preprint at http://arxiv.org/abs/0912.3871 (2010).

  20. Browne, D. E., Eisert, J., Scheel, S. & Plenio, M. B. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).

    Article  ADS  Google Scholar 

  21. Gu, M., Weedbrook, C., Menicucci, N. C., Ralph, T. C. & van Loock, P. Quantum computing with continuous.variable clusters. Phys. Rev. A 79, 062318 (2009).

    Article  ADS  Google Scholar 

  22. Lamoureux, L. P., Brainis, E., Amans, D., Barrett, J. & Massar, S. Provably secure experimental quantum bit-string generation. Phys. Rev. Lett. 94, 050503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  23. Lloyd, S. Enhanced sensitivity of photodetection via quantum illumination. Science 321, 1463–1465 (2008).

    Article  ADS  Google Scholar 

  24. Marino, A. M., Pooser, R. C., Boyer, V. & Lett, P. D. Tunable delay of Einstein–Podolsky–Rosen entanglement. Nature 457, 859–862 (2009).

    Article  ADS  Google Scholar 

  25. Appel, J., Figueroa, E., Korystov, D., Lobino, M. & Lvovsky, A. I. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

    Article  ADS  Google Scholar 

  26. Honda, K. et al. Storage and retrieval of a squeezed vacuum. Phys. Rev. Lett. 100, 093601 (2008).

    Article  ADS  Google Scholar 

  27. Adesso, G. & Chiribella, G. Quantum benchmark for teleportation and storage of squeezed states. Phys. Rev. Lett. 100, 170503 (2008).

    Article  ADS  Google Scholar 

  28. Owari, M., Plenio, M. B., Polzik, E. S., Serafini, A. & Wolf, M. M. Squeezing the limit: Quantum benchmarks for the teleportation and storage of squeezed states. New J. Phys. 10, 113014 (2008).

    Article  ADS  Google Scholar 

  29. Calsamiglia, J., Aspachs, M., Munoz-Tapia, R. & Bagan, E. Phys. Rev. A 79, 050301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  30. Duan, L., Giedke, G., Cirac, J. & Zoller, P. Inseparability criterion for continuous variable systems. Phys. Rev.Lett. 84, 2722–2725 (2000).

    Article  ADS  Google Scholar 

  31. Schori, C., Sørensen, J. L. & Polzik, E. S. Narrowband frequency tunable source of entangled light. Phys. Rev. A 66, 033802 (2002).

    Article  ADS  Google Scholar 

  32. Wasilewski, W. et al. Single mode quadrature entangled light from room temperature atomic vapour. Opt. Express 17, 14444–14457 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by EU projects QESSENCE, HIDEAS, CORNER, COMPAS, EMALI and COQUIT.

Author information

Authors and Affiliations

Authors

Contributions

Experimental group: K.J., W.W., H.K., T.F., B.M.N. and E.S.P. Calculation of the classical benchmark: M.O., M.B.P., A.S. and M.M.W.

Corresponding author

Correspondence to E. S. Polzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Wasilewski, W., Krauter, H. et al. Quantum memory for entangled continuous-variable states. Nature Phys 7, 13–16 (2011). https://doi.org/10.1038/nphys1819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing