Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

Abstract

Topological insulators embody a state of bulk matter characterizedby spin-momentum-locked surface states that span the bulk bandgap1,2,3,4,5,6,7. This highly unusual surface spin environment provides a rich ground for uncovering new phenomena 4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24. Understanding the response of a topological surface to strong Coulomb perturbations represents a frontier in discovering the interacting and emergent many-body physics of topological surfaces. Here we present the first controlled study of topological insulator surfaces under Coulomb and magnetic perturbations. We have used time-resolved deposition of iron, with a large Coulomb charge and significant magnetic moment, to systematically modify the topological spin structure of the Bi2Se3 surface. We observe that such perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time-reversal symmetry in the presence of band hybridizations. We present a theoretical model to account for the observed electron dynamics of the topological surface. Taken collectively, these results are a critical guide in controlling electron mobility and quantum behaviour of topological surfaces, not only for device applications but also in setting the stage for creating exotic particles such as axions or imaging monopoles on the surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Iron deposition strongly modifies the topological surface.
Figure 2: Iron doping creates five helical Dirac cones.
Figure 3: Surface-state theoretical simulations.
Figure 4: Surface evolution under Coulomb interaction, disorder and magnetism.

Similar content being viewed by others

References

  1. Moore, J. E. Topological insulators: The next generation. Nature Phys. 5, 378–380 (2009).

    Article  ADS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  3. Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

    Article  ADS  Google Scholar 

  4. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    Article  ADS  Google Scholar 

  5. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    Article  ADS  Google Scholar 

  6. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    Article  ADS  Google Scholar 

  7. Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398–402 (2009).

    Article  ADS  Google Scholar 

  8. Xia, Y. et al. Electrons on the surface of Bi2Se3 form a topologically-ordered two dimensional gas with a non-trivial Berry’s phase. Preprint at http://arxiv.org/abs/0812.2078 (2008).

  9. Hor, Y. S. et al. Development of ferromagnetism in the magnetically doped topological insulator Bi2−xMnxTe3 . Phys. Rev. B 81, 195203 (2010).

    Article  ADS  Google Scholar 

  10. Hsieh, D. et al. Observation of time-reversal-protected single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3 . Phys. Rev. Lett. 103, 146401 (2009).

    Article  ADS  Google Scholar 

  11. Biswas, R. R. & Balatsky, A. V. Impurity-induced states on the surface of 3D topological insulators. Phys. Rev. B 81, 233405 (2010).

    Article  ADS  Google Scholar 

  12. Garate, I. & Franz, M. Inverse spin-galvanic effect in a topological-insulator/ferromagnet interface. Phys. Rev. Lett. 104, 146802 (2010).

    Article  ADS  Google Scholar 

  13. Fu, L. & Kane, C. L. Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

    Article  ADS  Google Scholar 

  14. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  ADS  Google Scholar 

  15. Qi, X-L. et al. Inducing a magnetic monopole with topological surface states. Science 323, 1184–1187 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. Seradjeh, B., Moore, J. E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. Phys. Rev. Lett. 103, 066402 (2009).

    Article  ADS  Google Scholar 

  17. Tse, W-K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Article  ADS  Google Scholar 

  18. Zhang, H. et al. Model Hamiltonian for topological insulators. Phys. Rev. B 82, 045122 (2010).

    Article  ADS  Google Scholar 

  19. Lee, D-H. Surface states of topological insulators: The Dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett. 103, 196804 (2009).

    Article  ADS  Google Scholar 

  20. Hasan, M. Z. et al. Warping the cone on a topological insulator. Physics 2, 108 (2009).

    Article  Google Scholar 

  21. Fu, L. & Berg, E. Odd-parity topological superconductors: Theory and application to CuxBi2Se3 . Phys. Rev. Lett. 105, 097001 (2010).

    Article  ADS  Google Scholar 

  22. Wray, L. A., Xu, S-Y., Xia, Y., Hor, Y. S., Qian, D., Fedorov, A. V., Lin, H., Bansil, A., Cava, R. J. & Hasan, M. Z. Observation of topological order in a superconducting doped topological insulator. Nature Phys. 6, 855–859 (2010).

    Article  ADS  Google Scholar 

  23. Xia, Y. et al. Topological control: Systematic control of topological insulator Dirac fermion density on the surface of Bi2Te3. Preprint at http://arxiv.org/abs/0907.3089 (2009).

  24. Ye, F. et al. Spin helix of magnetic impurities in two-dimensional helical metal. Europhys. Lett. 90, 47001 (2010).

    Article  ADS  Google Scholar 

  25. Kawaminami, M. & Okazaki, A. Neutron diffraction study of Fe7Se8. II. J. Phys. Soc. Jpn 29, 649–655 (1970).

    Article  ADS  Google Scholar 

  26. Liu, Q. et al. Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).

    Article  ADS  Google Scholar 

  27. Wahl, P. et al. Exchange interaction between single magnetic adatoms. Phys. Rev. Lett. 98, 056601 (2007).

    Article  ADS  Google Scholar 

  28. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    Article  ADS  Google Scholar 

  29. Zhang, R-J. & Willis, R. F. Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin–spin interactions. Phys. Rev. Lett. 86, 2665–2668 (2001).

    Article  ADS  Google Scholar 

  30. Blaha, P. et al. Computer Code WIEN2K (Vienna Univ. Technology, 2001).

    Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with R. R. Biswas and D. Haldane. The synchrotron X-ray-based measurements and theoretical computations are supported by the Basic Energy Sciences of the US DOE (DE-FG-02-05ER46200, AC03-76SF00098 and DE-FG02-07ER46352). Materials growth and characterization are supported by NSF/DMR-0819860 and NSF-DMR-1006492. M.Z.H. acknowledges extra support from the A. P. Sloan Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.A.W., S-Y.X. and Y.X. contributed equally to the experiment with assistance from D.H. and M.Z.H.; A.V.F. provided beamline assistance; Y.S.H. and R.J.C. provided single-crystal samples; H.L. and A.B. carried out the calculations with assistance from M.Z.H.

Corresponding author

Correspondence to M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 457 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wray, L., Xu, SY., Xia, Y. et al. A topological insulator surface under strong Coulomb, magnetic and disorder perturbations. Nature Phys 7, 32–37 (2011). https://doi.org/10.1038/nphys1838

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing