Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs

Abstract

Qubits, the quantum mechanical bits required for quantum computing, must retain their quantum states for times long enough to allow the information contained in them to be processed. In many types of electron-spin qubits, the primary source of information loss is decoherence due to the interaction with nuclear spins of the host lattice. For electrons in gate-defined GaAs quantum dots, spin-echo measurements have revealed coherence times of about 1 μs at magnetic fields below 100 mT (refs 1, 2). Here, we show that coherence in such devices can survive much longer, and provide a detailed understanding of the measured nuclear-spin-induced decoherence. At fields above a few hundred millitesla, the coherence time measured using a single-pulse spin echo is 30 μs. At lower fields, the echo first collapses, but then revives at times determined by the relative Larmor precession of different nuclear species. This behaviour was recently predicted3,4, and can, as we show, be quantitatively accounted for by a semiclassical model for the dynamics of electron and nuclear spins. Using a multiple-pulse Carr–Purcell–Meiboom–Gillecho sequence, the decoherence time can be extended to more than 200 μs, an improvement by two orders of magnitude compared with previous measurements1,2,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Qubit control.
Figure 2: Echo amplitude.
Figure 3: CPMG decoupling experiments with 6, 10 and 16 π-pulses at Bext=0.4 T.

Similar content being viewed by others

References

  1. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  2. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    Article  ADS  Google Scholar 

  3. Cywinski, L., Witzel, W. M. & Das Sarma, S. Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine mediated interactions. Phys. Rev. B 79, 245314 (2009).

    Article  ADS  Google Scholar 

  4. Cywinski, L., Witzel, W. M. & Das Sarma, S. Electron spin dephasing due to hyperfine interactions with a nuclear spin bath. Phys. Rev. Lett. 102, 057601 (2009).

    Article  ADS  Google Scholar 

  5. Greilich, A. et al. Mode locking of electrons spin coherence in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  6. Press, D., Ladd, T., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  7. Koppens, F. H. L. et al. Control and detection of singlet–triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005).

    Article  ADS  Google Scholar 

  8. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control in two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009).

    Article  ADS  Google Scholar 

  9. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  10. Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet–triplet qubit. Phys. Rev. Lett. 103, 160503 (2009).

    Article  ADS  Google Scholar 

  11. Coish, W. A., Fischer, J. & Loss, D. Exponential decay in a spin bath. Phys. Rev. B 77, 125329 (2008).

    Article  ADS  Google Scholar 

  12. Chen, G., Bergman, D. L. & Balents, L. Semiclassical dynamics and long-time asymptotics of the central-spin problem in a quantum dot. Phys. Rev. B 76, 045312 (2007).

    Article  ADS  Google Scholar 

  13. Yao, W., Liu, R. B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  ADS  Google Scholar 

  14. Childress, L. et al. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281–285 (2006).

    Article  ADS  Google Scholar 

  15. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architecture. Phys. Rev. B 74, 035322 (2006).

    Article  ADS  Google Scholar 

  16. Witzel, W. M. & Das Sarma, S. Multiple-pulse coherence enhancement of solid state spin qubits. Phys. Rev. Lett. 98, 077601 (2007).

    Article  ADS  Google Scholar 

  17. Lee, B., Witzel, W. M. & Das Sarma, S. Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem. Phys. Rev. Lett. 100, 160505 (2008).

    Article  ADS  Google Scholar 

  18. Meiboom, S. & Gill, D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29, 688–691 (1958).

    Article  ADS  Google Scholar 

  19. Khodjasteh, K. & Lidar, D. A. Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences. Phys. Rev. A 75, 062310 (2007).

    Article  ADS  Google Scholar 

  20. Uhrig, G. S. Keeping a quantum bit alive by optimizing π-pulse sequences. Phys. Rev. Lett. 98, 100504 (2007).

    Article  ADS  Google Scholar 

  21. Biercuk, M. J. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  ADS  Google Scholar 

  22. Du, J. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).

    Article  ADS  Google Scholar 

  23. Levy, J. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  24. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    Article  ADS  Google Scholar 

  25. Sundfors, R. K. Exchange and quadrupole broadening of nuclear acoustic resonance line shapes in the III–V semiconductors. Phys. Rev. 185, 458–472 (1969).

    Article  ADS  Google Scholar 

  26. Taylor, J. M. et al. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007).

    Article  ADS  Google Scholar 

  27. Hester, R. K., Sher, A., Soest, J. F. & Weisz, G. Nuclear-magnetic-resonance detection of charge defects in gallium arsenide. Phys. Rev. B 10, 4262–4273 (1974).

    Article  ADS  Google Scholar 

  28. Bluhm, H., Foletti, S., Mahalu, D., Umansky, V. & Yacoby, A. Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath. Phys. Rev. Lett. 105, 216803 (2010).

    Article  ADS  Google Scholar 

  29. Viola, L., Lloyd, S. & Knill, E. Universal control of decoupled quantum systems. Phys. Rev. Lett. 83, 4888–4891 (1999).

    Article  ADS  Google Scholar 

  30. Khodjasteh, K. & Viola, L. Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett. 102, 080501 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. J. Reilly for advice on implementing the radiofrequency readout system and J. R. Maze for discussions. We acknowledge financial support from ARO/IARPA, the Department of Defense and the National Science Foundation under award number 0653336. I.N. and M.R. were supported by NSF grant DMR-0906475. This work was carried out in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

Electron-beam lithography and molecular-beam-epitaxy growth were carried out by D.M. and V.U., respectively. H.B., S.F. and A.Y. fabricated the sample, planned and executed the experiment and analysed the data. I.N., M.R., H.B. and A.Y. developed the theoretical model. H.B., S.F., I.N., M.R. and A.Y. wrote the paper.

Corresponding author

Correspondence to Amir Yacoby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluhm, H., Foletti, S., Neder, I. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys 7, 109–113 (2011). https://doi.org/10.1038/nphys1856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing