Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1−xPx)2

Abstract

In contrast to classical phase transitions driven by temperature,a quantum critical point (QCP) defines a transition at zero temperature that is driven by non-thermal parameters1,2,3. In the known quantum critical d-electron systems, tuning the electronic bandwidth by means of changing the applied pressure or unit-cell dimensions, or tuning the d-state population, is used to drive the criticality4,5,6. Here we describe how a novel chemical parameter, the breaking of bonds in Ge–Ge dimers that occurs within the intermetallic framework in SrCo2(Ge1−xPx)2, results in the appearance of a ferromagnetic (FM) QCP. Although both SrCo2P2 and SrCo2Ge2 are paramagnetic, weak itinerant ferromagnetism unexpectedly develops during the course of the dimer breaking, and a QCP is observed at the onset of the FM phase. The use of chemical bond breaking as a tuning parameter to induce QCP opens an avenue for designing and studying novel magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lattice collapse transition in SrCo2(Ge1−xPx)2.
Figure 2: The magnetic properties of SrCo2(Ge1−xPx)2.
Figure 3: QCP behaviour near x=0.325.
Figure 4: Summary and phase diagram for SrCo2(Ge1−xPx)2.

Similar content being viewed by others

References

  1. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    Article  ADS  Google Scholar 

  2. Stewart, G. R. Addendum: Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 78, 743–753 (2006).

    Article  ADS  Google Scholar 

  3. Löhneysen, H. v., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

    Article  ADS  Google Scholar 

  4. Sokolov, D. A., Aronson, M. C., Gannon, W. & Fisk, Z. Critical phenomena and the quantum critical point of ferromagnetic Zr1−xNbxZn2 . Phys. Rev. Lett. 96, 116404 (2006).

    Article  ADS  Google Scholar 

  5. Smith, R. P. et al. Marginal breakdown of the Fermi-liquid state on the border of metallic ferromagnetism. Nature 455, 1220–1223 (2008).

    Article  ADS  Google Scholar 

  6. Pfleiderer, C., Julian, S. R. & Lonzarich, G. G. Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets. Nature 414, 427–430 (2001).

    Article  ADS  Google Scholar 

  7. Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

    Article  ADS  Google Scholar 

  8. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  ADS  Google Scholar 

  9. Hoffmann, R. & Zheng, C. Making and breaking bonds in the solid state: The thorium chromium silicide (ThCr2Si2) structure. J. Phys. Chem. 89, 4175–4181 (1985).

    Article  Google Scholar 

  10. Just, G. & Paufler, P. On the coordination of ThCr2Si2BaAl4-type compounds within the field of free parameters. J. Alloys Comp. 232, 1–25 (1996).

    Article  Google Scholar 

  11. Analytis, J. G. et al. Fermi surface of SrFe2P2 determined by the de Haas– van Alphen effect. Phys. Rev. Lett. 103, 076401 (2009).

    Article  ADS  Google Scholar 

  12. Coldea, A. I. et al. Topological change of the Fermi surface in ternary iron pnictides with reduced c/a ratio: A de Haas–van Alphen study of CaFe2P2 . Phys. Rev. Lett. 103, 026404 (2009).

    Article  ADS  Google Scholar 

  13. Yildirim, T. Strong coupling of the Fe-spin state and the As–As hybridization in iron-pnictide superconductors from first-principle calculations. Phys. Rev. Lett. 102, 037003 (2009).

    Article  ADS  Google Scholar 

  14. Huhnt, C., Schlabitz, W., Wurth, A., Mewis, A. & Reehuis, M. First-order phase transitions in EuCo2P2 and SrNi2P2 . Phys. Rev. B 56, 13796–13804 (1997).

    Article  ADS  Google Scholar 

  15. Reehuis, M., Jeitschko, W., Kotzyba, G., Zimmer, B. & Hu, X. Antiferromagnetic order in the ThCr2Si2 type phosphides CaCo2P2 and CeCo2P2 . J. Alloys Comp. 266, 54–60 (1998).

    Article  Google Scholar 

  16. Chefki, M. et al. Pressure-induced transition of the sublattice magnetization in EuCo2P2: Change from local moment Eu (4f) to itinerant Co (3d) magnetism. Phys. Rev. Lett. 80, 802–805 (1998).

    Article  ADS  Google Scholar 

  17. Canfield, P. C. et al. Structural, magnetic and superconducting phase transitions in CaFe2As2 under ambient and applied pressure. Physica C 469, 404–412 (2009).

    Article  ADS  Google Scholar 

  18. Jia, S., Williams, A. J., Stephens, P. W. & Cava, R. J. Lattice collapse and the magnetic phase diagram of Sr1−xCaxCo2P2 . Phys. Rev. B 80, 165107 (2009).

    Article  ADS  Google Scholar 

  19. Reehuis, M. & Jeitschko, W. Structure and magnetic properties of the phosphides CaCo2P2 and LnT2P2 with ThCr2Si2 structure and LnTP with PbFCl structure (Ln=lanthanoids, T=Fe, Co, Ni) +. J. Phys. Chem. Solids 51, 961–968 (1990).

    Article  ADS  Google Scholar 

  20. Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957).

    Article  ADS  Google Scholar 

  21. Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism (Springer, 1985).

    Book  Google Scholar 

  22. Millis, A. J. Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

    Article  ADS  Google Scholar 

  23. Mydosh, J. A. Spin Glass: An Experimental Introduction (Taylor and Francis, 1993).

    Google Scholar 

  24. Pawina, J. Bachelor Thesis, Princeton Univ. (2010).

  25. Siggelkow, L., Hlukhyy, V. & Fässler, T. F. Synthesis, structure and chemical bonding of CaCo2Si2 and BaCo2Ge2—two new compounds with ThCr2Si2 structure type. Z. Anorg. Allg. Chem. 636, 378–384 (2010).

    Article  Google Scholar 

  26. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Strutures (VCH, 1988).

    Book  Google Scholar 

  27. McQueen, T. M. et al. Intrinsic properties of stoichiometric LaFePO. Phys. Rev. B 78, 024521 (2008).

    Article  ADS  Google Scholar 

  28. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS). Report No. 86 (Los Alamos National Laboratory LAUR, 2000).

  29. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Xiong and D. X. Qu for experimental assistance, as well as N. Ni for helpful discussion. The work at Princeton was supported by the US Department of Energy, Division of Basic Energy Sciences, Grant No. DE-FG02-98ER45706. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

P.J. and S.J. synthesized the materials. M.R.S. and B.H.T. performed the synchrotron XRD. S.J., J.G.C. and N.P.O. performed the thermodynamic measurements. S.J., P.J. and R.J.C. analysed the data. S.J. and R.J.C. wrote the paper. R.J.C. designed the study.

Corresponding author

Correspondence to R. J. Cava.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., Jiramongkolchai, P., Suchomel, M. et al. Ferromagnetic quantum critical point induced by dimer-breaking in SrCo2(Ge1−xPx)2. Nature Phys 7, 207–210 (2011). https://doi.org/10.1038/nphys1868

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1868

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing