Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transport through Andreev bound states in a graphene quantum dot

Abstract

When a low-energy electron is incident on an interface between a metal and superconductor, it causes the injection of a Cooper pair into the superconductor and the generation of a hole that reflects back into the metal—a process known as Andreev reflection. In confined geometries, this process can give rise to discrete Andreev bound states (ABS), which can enable transport of supercurrents through non-superconducting materials and have recently been proposed as a means of realizing solid-state qubits1,2,3. Here, we report transport measurements of sharp, gate-tunable ABS formed in a superconductor–quantum dot (QD)–normal system realized on an exfoliated graphene sheet. The QD is formed in graphene beneath a superconducting contact as a result of a work-function mismatch4,5. Individual ABS form when the discrete QD levels are proximity-coupled to the superconducting contact. Owing to the low density of states of graphene and the sensitivity of the QD levels to an applied gate voltage, the ABS spectra are narrow and can be continuously tuned down to zero energy by the gate voltage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Configuration and doping characteristics of the graphene device.
Figure 2: Schematic diagrams of the graphene–QD–SC device.
Figure 3: Superconducting tunnelling data showing oscillations and subgap ABS peaks.
Figure 4: Back-gate dependence of Andreev bound states.
Figure 5: Diagrams showing the energy dependence of Andreev bound states.

Similar content being viewed by others

References

  1. Shafranjuk, S. E., Nevirkovets, I. P. & Ketterson, J. B. A qubit device based on manipulations of Andreev bound states in double-barrier Josephson junctions. Solid State Commun. 121, 457–460 (2002).

    Article  ADS  Google Scholar 

  2. Zazunov, A., Shumeiko, V. S., Bratus’, E. N., Lantz, J. & Wendin, G. Andreev level qubit. Phys. Rev. Lett. 90, 087003 (2003).

    Article  ADS  Google Scholar 

  3. Zazunov, A., Shumeiko, V. S., Wendin, G. & Bratus’, E. N. Dynamics and phonon-induced decoherence of Andreev level qubit. Phys. Rev. B 71, 214505 (2005).

    Article  ADS  Google Scholar 

  4. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. Huard, B., Stander, N., Sulpizio, J. A. & Goldhaber-Gordon, D. Evidence of the role of contacts on the observed electron–hole asymmetry in graphene. Phys. Rev. B 78, 121402 (2008).

    Article  ADS  Google Scholar 

  6. Deutscher, G. Andreev–Saint-James reflections: A probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).

    Article  ADS  Google Scholar 

  7. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M. K. & Morpurgo, A. F. Induced superconductivity in graphene. Solid State Commun. 143, 72–76 (2007).

    Article  ADS  Google Scholar 

  8. Ojeda-Aristizabal, C., Ferrier, M., Gueron, S. & Bouchiat, H. Tuning the proximity effect in a superconductor–graphene–superconductor junction. Phys. Rev. B 79, 165436 (2009).

    Article  ADS  Google Scholar 

  9. Du, X., Skachko, I. & Andrei, E. Y. Josephson current and multiple Andreev reflections in graphene SNS junctions. Phys. Rev. B 77, 184507 (2008).

    Article  ADS  Google Scholar 

  10. Beenakker, C. W. J. Specular Andreev reflection in graphene. Phys. Rev. Lett. 97, 067007 (2006).

    Article  ADS  Google Scholar 

  11. Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).

    Article  ADS  Google Scholar 

  12. Sköldberg, J., Löfwander, T., Shumeiko, V.S. & Fogelström, M. Spectrum of Andreev bound states in a molecule embedded inside a microwave-excited superconducting junction. Phys. Rev. Lett. 101, 087002 (2008).

    Article  ADS  Google Scholar 

  13. Zhang, Z.Y. Differential conductance through a NINS junction on graphene. J. Phys. Condens. Matter 20, 445220 (2008).

    Article  Google Scholar 

  14. Ossipov, A., Titov, M. & Beenakker, C. W. J. Reentrance effect in a graphene n–p–n junction coupled to a superconductor. Phys. Rev. B 75, 241401 (2007).

    Article  ADS  Google Scholar 

  15. Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805.

  16. Eichler, A. et al. Even–odd effect in Andreev transport through a carbon nanotube quantum dot. Phys. Rev. Lett. 99, 126602 (2007).

    Article  ADS  Google Scholar 

  17. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  18. Chen, Y. F., Dirks, T., Al-Zoubi, G., Birge, N. O. & Mason, N. Nonequilibrium tunneling spectroscopy in carbon nanotubes. Phys. Rev. Lett. 102, 036804 (2009).

    Article  ADS  Google Scholar 

  19. Dirks, T., Chen, Y. F., Birge, N. O. & Mason, N. Superconducting tunnelling spectroscopy of a carbon nanotube quantum dot. Appl. Phys. Lett. 95, 192103 (2009).

    Article  ADS  Google Scholar 

  20. Park, J. & McEuen, P. L. Formation of a p-type quantum dot at the end of an n-type carbon nanotube. Appl. Phys. Lett. 79, 1363–1365 (2001).

    Article  ADS  Google Scholar 

  21. Young, A. F. & Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Phys. 5, 222–226 (2009).

    Article  ADS  Google Scholar 

  22. Shytov, A. V., Rudner, M. S. & Levitov, L. S. Klein backscattering and Fabry–Perot interference in graphene heterojunctions. Phys. Rev. Lett. 101, 156804 (2008).

    Article  ADS  Google Scholar 

  23. Silvestrov, P. G. & Efetov, K. B. Quantum dots in graphene. Phys. Rev. Lett. 98, 016802 (2007).

    Article  ADS  Google Scholar 

  24. Pillet, J-D. et al. Andreev bound states in a supercurrent-carrying carbon nanotube revealed. Nature Phys. 6, 965–969 (2010).

    Article  ADS  Google Scholar 

  25. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunnelling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  ADS  Google Scholar 

  26. Kouwenhoven, L. P. et al. in NATO Advanced Study Institute on Mesoscopic Electron Transport E345 edn (eds Sohn, L. L., Kouwenhoven, L. P. &Schön, G.) 105–214 (1997).

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Energy Division of Materials Science under grant DE-FG02-07ER46453 through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign, and partly carried out in the Materials Research Laboratory Central Facilities (partially supported by the Department of Energy under DE-FG02-07ER46453 and DE-FG02-07ER46471). T.L.H. acknowledges the National Science Foundation under grant DMR-0758462 and the Institute for Condensed Matter Theory at University of Illinois at Urbana-Champaign, and B.U. acknowledges the Department of Energy under grant DE-FG02-91ER45439. We acknowledge conversations with J. Maciejko.

Author information

Authors and Affiliations

Authors

Contributions

T.D. and Y-F.C. carried out the experiments. C.C. helped fabricate the samples. T.D., T.L.H., S.L., B.U., P.M.G. and N.M. analysed the data and wrote the main paper. T.L.H., B.U. and P.M.G. wrote Supplementary Information.

Corresponding author

Correspondence to Nadya Mason.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirks, T., Hughes, T., Lal, S. et al. Transport through Andreev bound states in a graphene quantum dot. Nature Phys 7, 386–390 (2011). https://doi.org/10.1038/nphys1911

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1911

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing