Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leidenfrost on a ratchet

Abstract

As discovered by Leidenfrost, liquids placed on very hot solids levitate on a cushion of their own vapour1,2,3. These model hovercrafts are remarkably mobile: placed on a hot ratchet, a droplet not only levitates, but also self-propels, in a well-defined direction, at a well-defined velocity4 (typically, 10 cm s−1). The challenge is to understand the origin of the phenomenon, which contrasts with other situations where an asymmetry in the solid/liquid contact was used to generate liquid self-propulsion5,6,7,8,9,10,11,12,13,14,15. We consider Leidenfrost solids that directly sublimate on hot substrates, and show that they also self-propel on ratchets. This leads to a scenario for the motion: the vapour flow escaping below the Leidenfrost body gets rectified by the presence of asymmetric textures, so that a directional thrust drives the levitating material. Using fishing lines to catch drops, we measure the force acting on them, and discuss both the driving force and the special friction generated by the textures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The device of Linke et al.
Figure 2: Dry ice propulsion.
Figure 3: Force measurement.
Figure 4: Terminal velocity of the drops.

Similar content being viewed by others

References

  1. Leidenfrost, J. G. De Aquae Communis Nonnullis Qualitatibus Tractatus (Duisburg, 1756).

    Google Scholar 

  2. Gottfried, B. S., Lee, C. J. & Bell, K. J. Leidenfrost phenomenon—film boiling of liquid droplets on a flat plate. Int. J. Heat Mass Trans. 9, 1167–1172 (1966).

    Article  Google Scholar 

  3. Biance, A. L., Clanet, C. & Quéré, D. Leidenfrost drops. Phys. Fluids 15, 1632–1637 (2003).

    Article  ADS  Google Scholar 

  4. Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006).

    Article  ADS  Google Scholar 

  5. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  ADS  Google Scholar 

  6. Bain, C. D., Burnett-Hall, G. D. & Montgomerie, R. R. Rapid motion of liquid drops. Nature 372, 414–415 (1994).

    Article  ADS  Google Scholar 

  7. Domingues Dos Santos, F. & Ondarçuhu, T. Free-running droplets. Phys. Rev. Lett. 75, 2972–2975 (1995).

    Article  ADS  Google Scholar 

  8. Sumino, Y., Magome, N., Hamada, T. & Yoshikawa, K. Self-running droplets: Emergence of regular motion from nonequilibrium noise. Phys. Rev. Lett. 94, 068301 (2005).

    Article  ADS  Google Scholar 

  9. Daniel, S., Chaudhury, M. K. & Chen, J. C. Past drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  ADS  Google Scholar 

  10. Brochard, F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir 5, 432–438 (1989).

    Article  Google Scholar 

  11. De Gennes, P. G. The dynamics of reactive wetting on solid surfaces. Physica A 249, 196–205 (1998).

    Article  ADS  Google Scholar 

  12. Bico, J. & Quéré, D. Self-propelling slugs. J. Fluid Mech. 467, 101–127 (2002).

    Article  ADS  Google Scholar 

  13. Buguin, A., Talini, L. & Silberzan, P. Ratchet-like topological structures for the control of microdrops. Appl. Phys. A 75, 207–212 (2002).

    Article  ADS  Google Scholar 

  14. John, K., Hänggi, P. & Thiele, U. Ratchet-driven fluid transport in bounded two-layer films of immiscible liquids. Soft Matter 4, 1183–1195 (2008).

    Article  ADS  Google Scholar 

  15. Prakash, M., Quéré, D. & Bush, J. W. M. Surface tension transport of prey by feeding shorebirds: The capillary ratchet. Science 320, 931–934 (2008).

    Article  ADS  Google Scholar 

  16. Daniel, S. & Chaudhury, M. K. Rectified motion of liquid drops on gradient surfaces induced by vibration. Langmuir 18, 3404–3407 (2002).

    Article  Google Scholar 

  17. Shastry, A., Case, M. J. & Böhringer, K. F. Directing droplets using microstructured surfaces. Langmuir 22, 6161–6167 (2006).

    Article  Google Scholar 

  18. Daniel, S., Chaudhury, M. K. & de Gennes, P. G. Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21, 4240–4248 (2005).

    Article  Google Scholar 

  19. Tong, L. S. Boiling Heat Transfer and Two- Phase Flow (Taylor & Francis, 1997).

    Google Scholar 

  20. Snezhko, A., Ben Jacob, E. & Aranson, I. S. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets. New J. Phys. 10, 043034 (2008).

    Article  ADS  Google Scholar 

  21. Nagy, P. T. & Neitzel, G. P. Optical levitation and transport of microdroplets: Proof of concept. Phys. Fluids 20, 101703 (2008).

    Article  ADS  Google Scholar 

  22. Lorenceau, E., Quéré, D., Ollitrault, J. Y. & Clanet, C. Gravitational oscillations of a column in a pipe. Phys. Fluids 14, 1985–1992 (2002).

    Article  ADS  Google Scholar 

  23. Biswas, G., Breuer, M. & Durst, F. Back-facing step flows for various expansions at low and moderate Reynolds numbers. J. Fluids Eng. 126, 362–374 (2004).

    Article  Google Scholar 

  24. Wachters, L. H. J., Bonne, H. & van Nouhuis, H. J. The heat transfer from a horizontal plate to sessile water drops in the spheroidal state. Chem. Eng. Sci. 21, 923–930 (1966).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A-L. Biance, E. Lorenceau, L. Tobin, H. Turlier, H. Rathgen, A. Le Goff, G. Dupeux and H. Wagret for stimulating discussions, and L. Quartier and D. Renard for designing the ratchets.

Author information

Authors and Affiliations

Authors

Contributions

G.L., M.L.M., C.C. and D.Q. designed the experiments; G.L. and M.L.M. carried out the experiments; G.L., M.L.M., C.C. and D.Q. developed the models; C.C. and D.Q. wrote the manuscript. G.L. and M.L.M. equally contributed to the work?

Corresponding author

Correspondence to David Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagubeau, G., Le Merrer, M., Clanet, C. et al. Leidenfrost on a ratchet. Nature Phys 7, 395–398 (2011). https://doi.org/10.1038/nphys1925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing