Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy

This article has been updated

Abstract

High-harmonic spectroscopy provides a unique insight into the electronic structure of atoms and molecules1,2,3,4,5. Although attosecond science holds the promise of accessing the timescale of electron–electron interactions, until now, their signature has not been seen in high-harmonic spectroscopy. We have recorded high-harmonic spectra of atoms to beyond 160 eV, using a new, almost ideal laser source with a wavelength of 1.8 μm and a pulse duration of less than two optical cycles. We show that we can relate these spectra to differential photoionization cross-sections measured with synchrotron sources. In addition, we show that the high-harmonic spectra contain features due to collective multi-electron effects involving inner-shell electrons, in particular the giant resonance in xenon. We develop a new theoretical model based on the strong-field approximation and show that it is in agreement with the experimental observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps for harmonic generation.
Figure 2: Results for krypton.
Figure 3: Results for xenon.
Figure 4: Prediction of our theoretical model.

Similar content being viewed by others

Change history

  • 07 March 2011

    In the version of this Letter originally published online, the affiliation for the first author, A. D. Shiner, was given incorrectly. This has now been corrected for all versions of the Letter.

References

  1. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  2. Le, A-T., Lucchese, R. R., Tonzani, S., Morishita, T. & Lin, C. D. Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

    Article  ADS  Google Scholar 

  3. Mairesse, Y., Levesque, J., Dudovich, N., Corkum, P. B. & Villeneuve, D. M. High harmonic generation from aligned molecules—amplitude and polarization. J. Mod. Optics 55, 2591–2602 (2008).

    Article  ADS  Google Scholar 

  4. Wörner, H. J., Niikura, H., Bertrand, J. B., Corkum, P. B. & Villeneuve, D. M. Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

    Article  ADS  Google Scholar 

  5. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–206 (2010).

    Article  ADS  Google Scholar 

  6. Berkowitz, J. Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic, 1979).

    Google Scholar 

  7. Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T. & Iwata, S. Handbook of HeI Photoelectron Spectra (Japan Scientific Societies Press, 1981).

    Google Scholar 

  8. Becker, U. & Shirley, D. A. (eds) VUV and Soft X-Ray Photoionization (Plenum Press, 1996).

  9. Torres, R. et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett. 98, 203007 (2007).

    Article  ADS  Google Scholar 

  10. Baker, S. et al. Probing proton dynamics in molecules on an attosecond timescale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  11. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  12. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic spectroscopy. Nature 466, 604–607 (2010).

    Article  ADS  Google Scholar 

  13. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  14. Le, A-T., Lucchese, R. R., Lee, M. T. & Lin, C. D. Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules. Phys. Rev. Lett. 102, 203001 (2009).

    Article  ADS  Google Scholar 

  15. Frolov, M. V. et al. Analytic description of the high-energy plateau in harmonic generation by atoms: Can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

    Article  ADS  Google Scholar 

  16. Ganeev, R. A. High-order harmonic generation in a laser plasma: A review of recent achievements. J. Phys. B 40, R213–R253 (2007).

    Article  ADS  Google Scholar 

  17. Frolov, M. V., Manakov, N. L. & Starace, A. F. Potential barrier effects in high-order harmonic generation by transition-metal ions. Phys. Rev. A 82, 023424 (2010).

    Article  ADS  Google Scholar 

  18. Schmidt, B. E. et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl. Phys. Lett. 96, 121109 (2010).

    Article  ADS  Google Scholar 

  19. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic formulae for high harmonic generation. J. Phys. B 42, 035601 (2009).

    Article  ADS  Google Scholar 

  20. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics Non-Relativistic Theory 3 edn (Course of Theoretical Physics, vol. 3, Pergamon Press, 1977).

    MATH  Google Scholar 

  21. Huang, K. N., Johnson, W. R. & Cheng, K. T. Theoretical photoionization parameters for the noble gases argon, krypton, and xenon. At. Nucl. Data Tables 26, 33–45 (1981).

    Article  ADS  Google Scholar 

  22. Minemoto, S. et al. Retrieving photorecombination cross sections of atoms from high-order harmonic spectra. Phys. Rev. A 78, 061402(R) (2008).

    Article  ADS  Google Scholar 

  23. Amusia, M. Y. & Connerade, J-P. The theory of collective motion probed by light. Rep. Prog. Phys. 63, 41–70 (2000).

    Article  ADS  Google Scholar 

  24. Becker, U. et al. Subshell photoionization of Xe between 40 and 1,000 eV. Phys. Rev. A 39, 3902–3911 (1989).

    Article  ADS  Google Scholar 

  25. Kutzner, M., Radojević, V. & Kelly, H. P. Extended photoionization calculations for xenon. Phys. Rev. A 40, 5052–5057 (1989).

    Article  ADS  Google Scholar 

  26. Popmintchev, T. et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

    Article  ADS  Google Scholar 

  27. Vozzi, C. et al. High-order harmonics generated by 1.5 μm parametric source. J. Mod. Opt. 57, 1008–1013 (2010).

    Article  ADS  Google Scholar 

  28. Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  29. Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

    Article  ADS  Google Scholar 

  30. Farrell, J. P., McFarland, B. K., Bucksbaum, P. H. & Gühr, M. Calibration of a high harmonic spectrometer by laser induced plasma emission. Opt. Express 17, 15134–15144 (2009).

    Article  ADS  Google Scholar 

  31. Fahlman, A., Krause, M. O., Carlson, T. A. & Svensson, A. Xe 5s, 5p correlation satellites in the region of strong interchannel interactions, 28–75 eV. Phys. Rev. A 30, 812–819 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank laser technicians F. Poitras and A. Laramée for their dedicated work on the laser system, and gratefully acknowledge financial support from NSERC, AFOSR, CIPI and FQRNT. We thank U. Becker, M. Spanner and T. Starace for illuminating discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.D.S. and B.E.S. contributed equally to this work. B.E.S., F.L. and J-C.K. developed the laser source. A.D.S., B.E.S. and C.T.H. carried out the experiments. H.J.W. interpreted the xenon results. A.D.S. analysed the data. S.P. and D.M.V. provided the theoretical parts. A.D.S., H.J.W., P.B.C. and D.M.V. wrote the manuscript.

Corresponding author

Correspondence to D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 739 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiner, A., Schmidt, B., Trallero-Herrero, C. et al. Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy. Nature Phys 7, 464–467 (2011). https://doi.org/10.1038/nphys1940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing