Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4

Abstract

In underdoped cuprate superconductors, phase stiffness is low and long-range superconducting order is destroyed readily by thermally generated vortices (and anti-vortices), giving rise to a broad temperature regime above the zero-resistive state in which the superconducting phase is incoherent1,2,3,4. It has often been suggested that these vortex-like excitations are related to the normal-state pseudogap or some interaction between the pseudogap state and the superconducting state5,6,7,8,9,10. However, to elucidate the precise relationship between the pseudogap and superconductivity, it is important to establish whether this broad phase-fluctuation regime vanishes, along with the pseudogap11, in the slightly overdoped region of the phase diagram where the superfluid pair density and correlation energy are both maximal12. Here we show, by tracking the restoration of the normal-state magnetoresistance in overdoped La2−xSrxCuO4, that the phase-fluctuation regime remains broad across the entire superconducting composition range. The universal low phase stiffness is shown to be correlated with a low superfluid density1, a characteristic of both underdoped and overdoped cuprates12,13,14. The formation of the pseudogap, by inference, is therefore both independent of and distinct from superconductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluctuating superconductivity in La1.79Sr0.21CuO4 (LSCO21).
Figure 2: Evolution of the upper field H2(T) and the phase diagram for overdoped LSCO.

Similar content being viewed by others

References

  1. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  2. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  3. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4 . Nature 406, 486–488 (2000).

    Article  ADS  Google Scholar 

  4. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

    Article  ADS  Google Scholar 

  5. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996).

    Article  ADS  Google Scholar 

  6. Loeser, A. G. et al. Temperature and doping dependence of the Bi–Sr–Ca–Cu–O electronic structure and fluctuation effects. Phys. Rev. B 56, 14185–14189 (1997).

    Article  ADS  Google Scholar 

  7. Nagaosa, N. & Lee, P. A. Ginzburg–Landau theory of the spin-charge-separated system. Phys. Rev. B 45, 966–970 (1992).

    Article  ADS  Google Scholar 

  8. Randeria, M., Trivedi, N., Moreo, A. & Scalettar, R. T. Pairing and spin gap in the normal state of short coherence length superconductors. Phys. Rev. Lett. 69, 2001–2004 (1992).

    Article  ADS  Google Scholar 

  9. Perali, A. et al. Two-gap model for underdoped cuprate superconductors. Phys. Rev. B 62, R9295–R9298 (2000).

    Article  ADS  Google Scholar 

  10. Lee, J. et al. Spectroscopic fingerprint of phase-incoherent superconductivity in the underdoped Bi2Sr2CaCu2O8+δ . Science 325, 1099–1103 (2009).

    Article  ADS  Google Scholar 

  11. Tallon, J. L. & Loram, J. W. The doping dependence of T*—what is the real high-Tc phase diagram? Physica 349C, 53–68 (2001).

    Article  ADS  Google Scholar 

  12. Bernhard, C. et al. Anomalous peak in the superconducting condensate density of cuprate high-Tc superconductors at a unique doping state. Phys. Rev. Lett. 86, 1614–1617 (2001).

    Article  ADS  Google Scholar 

  13. Uemura, Y. J. et al. Magnetic-field penetration depth in Tl2Ba2CuO6+δ in the overdoped regime. Nature 364, 605–607 (1993).

    Article  ADS  Google Scholar 

  14. Niedermayer, Ch. et al. Muon spin rotation study of the correlation between Tc and ns/m* in overdoped Tl2Ba2CuO6+δ . Phys. Rev. Lett. 71, 1764–1767 (1993).

    Article  ADS  Google Scholar 

  15. Ando, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B 60, 12475–12479 (1999).

    Article  ADS  Google Scholar 

  16. Rullier-Albenque, F. et al. Total suppression of superconductivity by high magnetic fields in YBa2Cu3O6.6 . Phys. Rev. Lett. 99, 027003 (2007).

    Article  ADS  Google Scholar 

  17. Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2−xSrxCuO4 . Science 323, 603–607 (2009).

    Article  ADS  Google Scholar 

  18. Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

    Google Scholar 

  19. Kimura, T. et al. In-plane and out-of-plane magnetoresistance in La2−xSrxCuO4 single crystals. Phys. Rev. B 53, 8733–8742 (1996).

    Article  ADS  Google Scholar 

  20. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  21. Rourke, P. M. C. et al. Fermi-surface reconstruction and two-carrier model for the Hall effect in YBa2Cu4O8 . Phys. Rev. B 82, 020514(R) (2010).

    Article  ADS  Google Scholar 

  22. Wang, Y. et al. High field phase diagram of cuprates derived from the Nernst effect. Phys. Rev. Lett. 88, 257003 (2002).

    Article  ADS  Google Scholar 

  23. Doniach, S. & Huberman, B. A. Topological excitations in two-dimensional superconductors. Phys. Rev. Lett. 42, 1169–1172 (1979).

    Article  ADS  Google Scholar 

  24. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  25. Wang, Y. & Wen, H. H. Doping dependence of the upper critical field in La2−xSrxCuO4 from specific heat. Europhys. Lett. 81, 57007 (2008).

    Article  ADS  Google Scholar 

  26. Hussey, N. E. et al. Dichotomy in the T-linear resistivity in high-Tc cuprates. Preprint at http://arxiv.org/abs/0912.2001v1.

  27. Kaminski, A. et al. Crossover from coherent to incoherent electronic excitations in the normal state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 90, 207003 (2003).

    Article  ADS  Google Scholar 

  28. Uemura, Y. J. et al. Universal correlations between Tc and ns/m* (carrier density over effective mass) in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  Google Scholar 

  29. Rullier-Albenque, F. et al. Nernst effect and disorder in the normal state of high-Tc cuprates. Phys. Rev. Lett. 96, 067002 (2006).

    Article  ADS  Google Scholar 

  30. Ando, Y., Komiya, S., Segawa, K., Ono, S. & Kurita, Y. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett. 93, 267001 (2004).

    Article  ADS  Google Scholar 

  31. Tallon, J. L. et al. Generic superconducting phase behaviour in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7−δ . Phys. Rev. B 51, 12911–12914 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge R. A. Cooper for experimental assistance, S. M. Hayden and O. J. Lipscombe for providing us with the LSCO23 crystals, and J. P. Annett, A. Carrington, B. Gyorffy, R. H. McKenzie, T. Senthil, N. Shannon, T. Timusk, Y. J. Uemura and J. A. Wilson for fruitful discussions. This work was supported by EPSRC (UK), MEXT-CT-2006-039047, EURYI, the National Research Foundation, Singapore and EuroMagNET under EU contract 228043. N.E.H. acknowledges a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Contributions

All authors made critical comments on the manuscript. Y.T., T.A. and Y.K. synthesized the samples. P.M.C.R., I.M., X.X., Y.W., B.V., C.P., E.V.K., U.Z. and N.E.H. carried out the transport measurements. P.M.C.R., I.M. and N.E.H. analysed and interpreted the transport data.

Corresponding author

Correspondence to Nigel E. Hussey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rourke, P., Mouzopoulou, I., Xu, X. et al. Phase-fluctuating superconductivity in overdoped La2−xSrxCuO4. Nature Phys 7, 455–458 (2011). https://doi.org/10.1038/nphys1945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1945

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing