Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities

Abstract

Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism1,2,3,4 is one of the ways foreseen for the switching of future spintronic memories or registers5,6. But the classical geometries where the current is injected in the plane of the magnetic layers suffer from poor efficiencies of the intrinsic torques7,8 acting on the DWs. A way to circumvent this problem is to use vertical-current injection9,10,11. For that case, theoretical calculations12 attribute the microscopic origin of DW displacements to the out-of-plane (‘field-like’) spin-transfer torque13,14. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical-current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow quantifying this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents15. Step-by-step resistance switching of the magnetic tunnel junction should provide a new approach to spintronic memristive devices16,17,18.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic tunnel junction design for DW motion by vertical current injection.
Figure 2: Vertical-current-induced DW depinning.
Figure 3: Spin torque measurements: DW depinning versus spin diode.
Figure 4: Plot of the equivalent field versus d.c. voltage.

Similar content being viewed by others

References

  1. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  ADS  Google Scholar 

  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  ADS  Google Scholar 

  3. Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509–511 (2003).

    Article  ADS  Google Scholar 

  4. Klaui, M. et al. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures. Appl. Phys. Lett. 83, 105–107 (2003).

    Article  ADS  Google Scholar 

  5. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  6. Fukami, S. et al. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM VLSI Technology, 2009 Symposium on, Honolulu, HI, 230–231 (2009).

  7. Hayashi, M. et al. Current driven domain wall velocities exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 98, 037204 (2007).

    Article  ADS  Google Scholar 

  8. Klaui, M. et al. Controlled and reproducible domain wall displacement by current pulses injected into ferromagnetic ring structures. Phys. Rev. Lett. 94, 106601 (2005).

    Article  ADS  Google Scholar 

  9. Ravelosona, D. et al. Domain wall creation in nanostructures driven by a spin-polarized current. Phys. Rev. Lett. 96, 186604 (2006).

    Article  ADS  Google Scholar 

  10. Rebei, A. & Mryasov, O. Dynamics of a trapped domain wall in a spin-valve nanostructure with current perpendicular to the plane. Phys. Rev. B 74, 014412 (2006).

    Article  ADS  Google Scholar 

  11. Boone, C. T. et al. Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire. Phys. Rev. Lett. 104, 097203 (2010).

    Article  ADS  Google Scholar 

  12. Khvalkovskiy, K. V. et al. High domain wall velocities due to spin currents perpendicular to the plane. Phys. Rev. Lett. 102, 067206 (2009).

    Article  ADS  Google Scholar 

  13. Slonczewski, J. C. Currents, torques, and polarization factors in magnetic tunnel junctions. Phys. Rev. B 71, 024411 (2005).

    Article  ADS  Google Scholar 

  14. Theodonis, I., Kioussis, N., Kalitsov, A., Chshiev, M. & Butler, W. H. Anomalous bias dependence of spin torque in magnetic tunnel junctions. Phys. Rev. Lett. 97, 237205 (2006).

    Article  ADS  Google Scholar 

  15. Lou, X., Gao, Z., Dimitrov, D. V. & Tang, M. X. Demonstration of multilevel cell spin transfer switching in MgO magnetic tunnel junctions. Appl. Phys. Lett. 93, 242502 (2008).

    Article  ADS  Google Scholar 

  16. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Article  ADS  Google Scholar 

  17. Wang, X., Chen, Y., Xi, H., Li, H. & Dimitrov, D. Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 30, 294–297 (2009).

    Article  ADS  Google Scholar 

  18. Grollier, J., Cros, V. & Nguyen Van dau, F. Memristor device with resistance adjustable by moving a magnetic wall by spin transfer and use of said memristor in a neural network. Patent, WO/2010/125181 (2010).

  19. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  ADS  Google Scholar 

  20. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  ADS  Google Scholar 

  21. Kondou, K., Ohshima, N., Kasai, S., Nakatani, Y. & Ono, T. Single shot detection of the magnetic domain wall motion by using tunnel magnetoresistance effect. Appl. Phys. Exp. 1, 061302 (2008).

    Article  ADS  Google Scholar 

  22. Sankey, J. C. et al. Measurement of the spin-transfer-torque vector in magnetic tunnel junctions. Nature Phys. 4, 67–71 (2007).

    Article  ADS  Google Scholar 

  23. Kubota, H. et al. Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions. Nature Phys. 4, 37–41 (2007).

    Article  ADS  Google Scholar 

  24. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 66, 014407 (2002).

    Article  ADS  Google Scholar 

  25. Xia, K., Kelly, P. J., Bauer, G. E. W., Brataas, A. & Turek, I. Spin torques in ferromagnetic/normal-metal structures. Phys. Rev. B 65, 220401(R) (2002).

    Article  ADS  Google Scholar 

  26. Oh, S-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nature Phys. 5, 898–902 (2009).

    Article  ADS  Google Scholar 

  27. Tang, Y-H., Kioussis, N., Kalitsov, A., Butler, W. H. & Car, R. Influence of asymmetry on bias behaviour of spin torque. Phys. Rev. B 81, 054437 (2010).

    Article  ADS  Google Scholar 

  28. Saitoh, E., Miyajima, H., Yamaoka, T. & Tatara, G. Current-induced resonance and mass determination of a single magnetic domain wall. Nature 432, 203–206 (2004).

    Article  ADS  Google Scholar 

  29. Wang, C. et al. Bias and angular dependence of spin-transfer torque in magnetic tunnel junctions. Phys. Rev. B. 79, 224416 (2009).

    Article  ADS  Google Scholar 

  30. Yuasa, S. & Djayaprawira, D. D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J. Phys. D 40, R337–R354 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the CNRS, RFBR grant (Grant No. 09-02-01423), JSPS Postdoctoral Fellowships for Research Abroad and the European Research Council (Starting Independent Researcher Grant No. ERC 2010 Stg 259068) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.G., A.C., V.C. and S.Y. conceived the experiments. A.C. and R.M. carried out the measurements and analysed the data with the help of J.G. and V.C.; A.C. performed the numerical simulations with help from J.G., A.V.K. and K.A.Z.; K.N., Y.N., H.M, K.T. deposited the magnetic stack. A. Fukushima fabricated the samples. J.G. wrote the paper with discussions and comments from A.C., R.M., V.C., A.A., S.Y. and A. Fert.

Corresponding author

Correspondence to J. Grollier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanthbouala, A., Matsumoto, R., Grollier, J. et al. Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nature Phys 7, 626–630 (2011). https://doi.org/10.1038/nphys1968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing