Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Twin-atom beams

Abstract

In recent years, substantial progress has been made in exploringand exploiting the analogy between classical light and matter waves for fundamental investigations and applications1. Extending this analogy to quantum matter-wave optics is promoted by the nonlinearities intrinsic to interacting particles and is a stepping stone towards non-classical states2,3. In light optics, twin-photon beams4 are a key element for generating the non-local correlations and entanglement required for applications such as precision metrology and quantum communication5. Similar sources for massive particles have so far been limited by the multi-mode character of the processes involved or a predominant background signal6,7,8,9,10,11,12,13. Here we present highly efficient emission of twin-atom beams into a single transversal mode of a waveguide potential. The source is a one-dimensional degenerate Bose gas14 in the first radially excited state. We directly measure a suppression of fluctuations in the atom number difference between the beams to 0.37(3) with respect to the classical expectation, equivalent to 0.11(2) after correcting for detection noise. Our results underline the potential of ultracold atomic gases as sources for quantum matter-wave optics and should enable the implementation of schemes previously unattainable with massive particles5,15,16,17,18,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the excitation and emission process.
Figure 2: Dynamics of the excitation and emission process: comparison between theory and experiment.
Figure 3: Atom cloud image analysis.
Figure 4: Correlation analysis.

Similar content being viewed by others

References

  1. Cronin, A., Schmiedmayer, J. & Pritchard, D. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009).

    Article  ADS  Google Scholar 

  2. Deng, L. et al. Four wave mixing with matter waves. Nature 398, 218–220 (1999).

    Article  ADS  Google Scholar 

  3. Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose–Einstein condensate. Science 291, 2386–2389 (2001).

    Article  ADS  Google Scholar 

  4. Heidmann, A. et al. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett. 59, 2555–2557 (1987).

    Article  ADS  Google Scholar 

  5. Reid, M. D. et al. Colloquium: The Einstein–Podolsky–Rosen paradox: From concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  6. Vogels, J., Xu, K. & Ketterle, W. Generation of macroscopic pair-correlated atomic beams by four-wave mixing in Bose–Einstein condensates. Phys. Rev. Lett. 89, 020401 (2002).

    Article  ADS  Google Scholar 

  7. Gemelke, N., Sarajlic, E., Bidel, Y., Hong, S. & Chu, S. Parametric amplification of matter waves in periodically translated optical lattices. Phys. Rev. Lett. 95, 170404 (2005).

    Article  ADS  Google Scholar 

  8. Campbell, G. K. et al. Parametric amplification of scattered atom pairs. Phys. Rev. Lett. 96, 020406 (2006).

    Article  ADS  Google Scholar 

  9. Spielman, I. B. et al. Collisional deexcitation in a quasi-two-dimensional degenerate bosonic gas. Phys. Rev. A 73, 020702 (2006).

    Article  ADS  Google Scholar 

  10. Perrin, A. et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose–Einstein condensates. Phys. Rev. Lett. 99, 150405 (2007).

    Article  ADS  Google Scholar 

  11. Dall, R. G. et al. Paired-atom laser beams created via four-wave mixing. Phys. Rev. A 79, 011601 (2009).

    Article  ADS  Google Scholar 

  12. Jaskula, J-C. et al. Sub-Poissonian number differences in four-wave mixing of matter waves. Phys. Rev. Lett. 105, 190402 (2010).

    Article  ADS  Google Scholar 

  13. Klempt, C. et al. Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010).

    Article  ADS  Google Scholar 

  14. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1d gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

    Article  ADS  Google Scholar 

  15. Dunningham, J., Burnett, K. & Barnett, S. Interferometry below the standard quantum limit with Bose–Einstein condensates. Phys. Rev. Lett. 89, 150401 (2002).

    Article  ADS  Google Scholar 

  16. Horne, M. A., Shimony, A. & Zeilinger, A. Two-particle interferometry. Phys. Rev. Lett. 62, 2209–2212 (1989).

    Article  ADS  Google Scholar 

  17. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  18. Rarity, J. & Tapster, P. Experimental violation of Bell’s inequality based on phase and momentum. Phys. Rev. Lett. 64, 2495–2498 (1990).

    Article  ADS  Google Scholar 

  19. Gneiting, C. & Hornberger, K. Bell test for the free motion of material particles. Phys. Rev. Lett. 101, 260503 (2008).

    Article  ADS  Google Scholar 

  20. Estève, J., Gross, C., Weller, A., Giovanazzi, S. & Oberthaler, M. K. Squeezing and entanglement in a Bose–Einstein condensate. Nature 455, 1216–1219 (2008).

    Article  ADS  Google Scholar 

  21. Maussang, K. et al. Enhanced and reduced atom number fluctuations in a BEC splitter. Phys. Rev. Lett. 105, 080403 (2010).

    Article  ADS  Google Scholar 

  22. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: From wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  23. Schumm, T. et al. Matter wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005).

    Article  ADS  Google Scholar 

  24. Stimming, H-P., Mauser, N., Schmiedmayer, J. & Mazets, I. Fluctuations and stochastic processes in one-dimensional many-body quantum systems. Phys. Rev. Lett. 105, 015301 (2010).

    Article  ADS  Google Scholar 

  25. Perrin, A. et al. Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold. Preprint at http://arXiv.org/1012.5260 (2010).

  26. Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

    Article  ADS  Google Scholar 

  27. Bücker, R. et al. Single-particle-sensitive imaging of freely propagating ultracold atoms. New J. Phys. 11, 103039 (2009).

    Article  ADS  Google Scholar 

  28. Pu, H. & Meystre, P. Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000).

    Article  ADS  Google Scholar 

  29. Duan, L-M., Sørensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000).

    Article  ADS  Google Scholar 

  30. Hohenester, U., Rekdal, P. K., Borzì, A. & Schmiedmayer, J. Optimal quantum control of Bose–Einstein condensates in magnetic microtraps. Phys. Rev. A 75, 023602 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the FWF projects P21080-N16 and I607, the EU projects AQUTE, QuDeGPM and Marie Curie (FP7 GA no. 236702), the FWF doctoral programme CoQuS (W 1210), the FunMat and NAWI GASS research alliances, the City of Vienna and Siemens Austria. We wish to thank E. Altman, A. Gottlieb, B. Hessmo, K. Kheruntsyan, I. Mazets, M. Oberthaler, H. Ritsch and G. von Winckel for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.B., S.M. and T. Berrada collected the data presented in this letter. J.G. and U.H. provided the OCT calculations for the excitation sequence. All authors contributed to analysis and interpretation of the data and helped in editing the manuscript.

Corresponding author

Correspondence to Jörg Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bücker, R., Grond, J., Manz, S. et al. Twin-atom beams. Nature Phys 7, 608–611 (2011). https://doi.org/10.1038/nphys1992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing