Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum superposition of a single microwave photon in two different ’colour’ states

Abstract

Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information1. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element2,3. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions4,5. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion6,7. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state8 and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different ’colours’. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols9,10 on-chip11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device description and spectroscopy.
Figure 2: Spectroscopy of parametrically coupled cavity modes and one-photon Rabi-swap oscillations.
Figure 3: Single-photon Ramsey interferences.
Figure 4: Dependence of the coupling rate with the SQUID flux.

Similar content being viewed by others

References

  1. Haroche, S. & Raimond, J. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  2. Rauschenbeutel, A. et al. Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment. Phys. Rev. A 64, 50301 (2001).

    Article  ADS  Google Scholar 

  3. Wang, H. et al. Deterministic entanglement of photons in two superconducting microwave resonators. Phys. Rev. Lett. 106, 060401 (2011).

    Article  ADS  Google Scholar 

  4. Brown, K. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011).

    Article  ADS  Google Scholar 

  5. Harlander, M., Lechner, R., Brownnutt, M., Blatt, R. & Hänsel, W. Trapped-ion antennae for the transmission of quantum information. Nature 471, 200–203 (2011).

    Article  ADS  Google Scholar 

  6. Louisell, W., Yariv, A. & Siegman, A. Quantum fluctuations and noise in parametric processes. I. Phys. Rev. 124, 1646–1654 (1961).

    Article  ADS  Google Scholar 

  7. Tucker, J. & Walls, D. Quantum theory of parametric frequency conversion. Ann. Phys. 52, 1–15 (1969).

    Article  ADS  Google Scholar 

  8. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  9. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  10. Milburn, G. Photons as qubits. Phys. Scr. 2009, 014003 (2009).

    Article  Google Scholar 

  11. Matthews, J., Politi, A., Stefanov, A. & O’Brien, J. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  12. Huang, J. & Kumar, P. Observation of quantum frequency conversion. Phys. Rev. Lett. 68, 2153–2156 (1992).

    Article  ADS  Google Scholar 

  13. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  14. Rakher, M., Ma, L., Slattery, O., Tang, X. & Srinivasan, K. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nature Photon. 4, 786–791 (2010).

    Article  ADS  Google Scholar 

  15. Vandevender, A. & Kwiat, P. High efficiency single photon detection via frequency up-conversion. J. Mod. Opt. 51, 1433–1445 (2004).

    Article  ADS  Google Scholar 

  16. Gröblacher, S., Hammerer, K., Vanner, M. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009).

    Article  ADS  Google Scholar 

  17. Teufel, J. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011).

    Article  ADS  Google Scholar 

  18. Wallquist, M. et al. Single-atom cavity QED and optomicromechanics. Phys. Rev. A 81, 23816 (2010).

    Article  ADS  Google Scholar 

  19. Niskanen, A. et al. Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007).

    Article  ADS  Google Scholar 

  20. Yurke, B. et al. Observation of parametric amplification and deamplification in a Josephson parametric amplifier. Phys. Rev. A 39, 2519–2533 (1989).

    Article  ADS  Google Scholar 

  21. Bergeal, N. et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator. Nature 465, 64–68 (2010).

    Article  ADS  Google Scholar 

  22. Castellanos-Beltran, M., Irwin, K., Hilton, G., Vale, L. & Lehnert, K. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008).

    Article  ADS  Google Scholar 

  23. Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    Article  ADS  Google Scholar 

  24. Chirolli, L., Burkard, G., Kumar, S. & DiVincenzo, D. P. Superconducting resonators as beam splitters for linear-optics quantum computation. Phys. Rev. Lett. 104, 230502 (2010).

    Article  ADS  Google Scholar 

  25. Tian, L., Allman, M. & Simmonds, R. Parametric coupling between macroscopic quantum resonators. New J. Phys. 10, 115001 (2008).

    Article  ADS  Google Scholar 

  26. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    Article  ADS  Google Scholar 

  27. Palacios-Laloy, A. et al. Tunable resonators for quantum circuits. J. Low Temp. Phys. 151, 1034–1042 (2008).

    ADS  Google Scholar 

  28. Sandberg, M. et al. Tuning the field in a microwave resonator faster than the photon lifetime. App. Phys. Lett. 92, 203501 (2008).

    Article  ADS  Google Scholar 

  29. Louisell, W. Coupled Mode and Parametric Electronics (Wiley, 1960).

    Google Scholar 

  30. Sillanpää, M., Park, J. & Simmonds, R. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438–442 (2007).

    Article  ADS  Google Scholar 

  31. Law, C. K. & Eberly, J. H. Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055–1058 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. Bergren and L. Ranzani for technical help, and J. Park, F. Altomare and L. Spietz for valuable input.

Author information

Authors and Affiliations

Authors

Contributions

E.Z-B. and F.N. designed the experiment, built the measurement set-up and performed the measurements. M.L., R.W.S., J.A. contributed to the experimental design. L.R.V. contributed to the fabrication process development. J.A. conceived the experiment and supervised the project. All authors participated in the sample fabrication, the writing of the manuscript and the data analysis.

Corresponding authors

Correspondence to Eva Zakka-Bajjani, François Nguyen or José Aumentado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakka-Bajjani, E., Nguyen, F., Lee, M. et al. Quantum superposition of a single microwave photon in two different ’colour’ states. Nature Phys 7, 599–603 (2011). https://doi.org/10.1038/nphys2035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing