Abstract
Atom assemblies on surfaces represent the ultimate lower size limit for electronic circuits, and their conduction properties are governed by quantum phenomena. A fundamental prediction for a line of atoms confining the electrons to one dimension is the Tomonaga–Luttinger liquid1. Yet, astonishingly, this has not been observed in surface systems so far. Here we scrutinize self-organized chains of single-atom width by scanning tunnelling spectroscopy and photoemission. The low-energy spectra univocally show power-law behaviour. Even more, the density of states obeys universal scaling with energy and temperature. This demonstrates paradigmatic Tomonaga–Luttinger liquid properties2,3 encountered at the atomic scale, with bearing for the conductivity of wires and junctions. Local control enables us to study modified interactions due to defects or bridging atoms not previously possible.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585–2609 (1981).
Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).
Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2003).
Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).
Claessen, R. et al. Spectroscopic signatures of spin–charge separation in the quasi-one-dimensional organic conductor TTF–TCNQ. Phys. Rev. Lett. 88, 096402 (2002).
Hager, J. et al. Non-Fermi-liquid behavior in quasi-one-dimensional Li0.9Mo6O17 . Phys. Rev. Lett. 95, 186402 (2005).
Wang, F. et al. New Luttinger-liquid physics from photoemission on Li0.9Mo6O17 . Phys. Rev. Lett. 96, 196403 (2006).
Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).
Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).
Auslaender, O. M. et al. Spin–charge separation and localization in one dimension. Science 308, 88–92 (2005).
Jompol, Y. et al. Probing spin–charge separation in a Tomonaga–Luttinger liquid. Science 325, 597–601 (2009).
Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal–molecule–metal bridge. Science 302, 77–81 (2003).
Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).
Stekolnikov, A. A., Bechstedt, F., Wisniewski, M., Schäfer, J. & Claessen, R. Atomic nanowires on the Pt/Ge(001) surface: Buried Pt–Ge versus top Pt–Pt chains. Phys. Rev. Lett. 100, 196101 (2008).
Schäfer, J., Blumenstein, C., Meyer, S., Wisniewski, M. & Claessen, R. New model system for a one-dimensional electron liquid: Self-organized atomic gold chains on Ge(001). Phys. Rev. Lett. 101, 236802 (2008).
Yeom, H. W. et al. Instability and charge density wave of metallic quantum chains on a silicon surface. Phys. Rev. Lett. 82, 4898–4901 (1999).
Segovia, P., Purdie, D., Hengsberger, M. & Baer, Y. Observation of spin and charge collective modes in one-dimensional metallic chains. Nature 402, 504–507 (1999).
Ahn, J. R., Kang, P. G., Ryang, K. D. & Yeom, H. W. Coexistence of two different Peierls distortions within an atomic scale wire: Si(553)–Au. Phys. Rev. Lett. 95, 196402 (2005).
Losio, R. et al. Band splitting for Si(557)–Au: Is it spin–charge separation? Phys. Rev. Lett. 86, 4632–4635 (2001).
Ahn, J. R., Yeom, H. W., Yoon, H. S. & Lyo, I-W. Metal–insulator transition in Au atomic chains on Si with two proximal bands. Phys. Rev. Lett. 91, 196403 (2003).
Schäfer, J. et al. Unusual spectral behavior of charge-density waves with imperfect nesting in a quasi-one-dimensional metal. Phys. Rev. Lett. 91, 066401 (2003).
Meden, V. & Schönhammer, K. Spectral functions for the Tomonaga–Luttinger model. Phys. Rev. B 46, 15753–15760 (1992).
Schönhammer, K. & Meden, V. Correlation effects in photoemission from low dimensional metals. J. Electron. Spectrosc. 62, 225–236 (1993).
Mishchenko, E. G., Andreev, A. V. & Glazman, L. I. Zero-bias anomaly in disordered wires. Phys. Rev. Lett. 87, 246801 (2001).
Bartosch, L. & Kopietz, P. Zero bias anomaly in the density of states of low-dimensional metals. Eur. Phys. J. B 28, 29–36 (2002).
Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).
Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).
Eggert, S., Johannesson, H. & Mattsson, A. Boundary effects on spectral properties of interacting electrons in one dimension. Phys. Rev. Lett. 76, 1505–1508 (1996).
Schulz, H. J. Long-range Coulomb interactions in quasi-one-dimensional conductors. J. Phys. C 16, 6769–6787 (1983).
Meyer, S. et al. Strictly one-dimensional electron system in Au chains on Ge(001) revealed by photoelectron k-space mapping. Phys. Rev. B 83, 121411(R) (2011).
Acknowledgements
We thank S. Eggert, V. Meden, B. Trauzettel, P. Recher and F. F. Assaad for theoretical discussions. We also acknowledge support by the Deutsche Forschungsgemeinschaft under grants Scha 1510/2 and FOR 1162.
Author information
Authors and Affiliations
Contributions
C.B., J.S., S. Mietke, S. Meyer, A.D. and M.L. carried out the experiments, R.M. provided STS expertise, X.Y.C. and L.P. ran the photoemission station, C.B., J.S., S. Mietke, S. Meyer and A.D. analysed the data, C.B., J.S. and S. Meyer made the figures, J.S. and R.C. wrote the text and all authors contributed to critical discussion of the data.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 652 kb)
Rights and permissions
About this article
Cite this article
Blumenstein, C., Schäfer, J., Mietke, S. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nature Phys 7, 776–780 (2011). https://doi.org/10.1038/nphys2051
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2051
This article is cited by
-
Direct growth of single-metal-atom chains
Nature Synthesis (2022)
-
Intriguing one-dimensional electronic behavior in emerging two-dimensional materials
Nano Research (2021)
-
A tunable and unidirectional one-dimensional electronic system Nb2n+1SinTe4n+2
npj Quantum Materials (2020)
-
Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator
Nature Physics (2020)
-
Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary
Nature Communications (2017)