Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid

Abstract

Atom assemblies on surfaces represent the ultimate lower size limit for electronic circuits, and their conduction properties are governed by quantum phenomena. A fundamental prediction for a line of atoms confining the electrons to one dimension is the Tomonaga–Luttinger liquid1. Yet, astonishingly, this has not been observed in surface systems so far. Here we scrutinize self-organized chains of single-atom width by scanning tunnelling spectroscopy and photoemission. The low-energy spectra univocally show power-law behaviour. Even more, the density of states obeys universal scaling with energy and temperature. This demonstrates paradigmatic Tomonaga–Luttinger liquid properties2,3 encountered at the atomic scale, with bearing for the conductivity of wires and junctions. Local control enables us to study modified interactions due to defects or bridging atoms not previously possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomic arrangement of self-organized gold chains on Ge(001).
Figure 2: Spectroscopy of the DOS at low energies.
Figure 3: Spectral properties investigated for a wide temperature range.
Figure 4: Tunnelling spectra near chain end with increased exponent.

Similar content being viewed by others

References

  1. Haldane, F. D. M. ‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585–2609 (1981).

    Article  ADS  Google Scholar 

  2. Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 58, 977–1116 (1995).

    Article  ADS  Google Scholar 

  3. Giamarchi, T. Quantum Physics in One Dimension (Clarendon Press, 2003).

    Book  Google Scholar 

  4. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  Google Scholar 

  5. Claessen, R. et al. Spectroscopic signatures of spin–charge separation in the quasi-one-dimensional organic conductor TTF–TCNQ. Phys. Rev. Lett. 88, 096402 (2002).

    Article  ADS  Google Scholar 

  6. Hager, J. et al. Non-Fermi-liquid behavior in quasi-one-dimensional Li0.9Mo6O17 . Phys. Rev. Lett. 95, 186402 (2005).

    Article  ADS  Google Scholar 

  7. Wang, F. et al. New Luttinger-liquid physics from photoemission on Li0.9Mo6O17 . Phys. Rev. Lett. 96, 196403 (2006).

    Article  ADS  Google Scholar 

  8. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  9. Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article  ADS  Google Scholar 

  10. Auslaender, O. M. et al. Spin–charge separation and localization in one dimension. Science 308, 88–92 (2005).

    Article  ADS  Google Scholar 

  11. Jompol, Y. et al. Probing spin–charge separation in a Tomonaga–Luttinger liquid. Science 325, 597–601 (2009).

    Article  ADS  Google Scholar 

  12. Nazin, G. V., Qiu, X. H. & Ho, W. Visualization and spectroscopy of a metal–molecule–metal bridge. Science 302, 77–81 (2003).

    Article  ADS  Google Scholar 

  13. Nilius, N., Wallis, T. M. & Ho, W. Development of one-dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    Article  ADS  Google Scholar 

  14. Stekolnikov, A. A., Bechstedt, F., Wisniewski, M., Schäfer, J. & Claessen, R. Atomic nanowires on the Pt/Ge(001) surface: Buried Pt–Ge versus top Pt–Pt chains. Phys. Rev. Lett. 100, 196101 (2008).

    Article  ADS  Google Scholar 

  15. Schäfer, J., Blumenstein, C., Meyer, S., Wisniewski, M. & Claessen, R. New model system for a one-dimensional electron liquid: Self-organized atomic gold chains on Ge(001). Phys. Rev. Lett. 101, 236802 (2008).

    Article  ADS  Google Scholar 

  16. Yeom, H. W. et al. Instability and charge density wave of metallic quantum chains on a silicon surface. Phys. Rev. Lett. 82, 4898–4901 (1999).

    Article  ADS  Google Scholar 

  17. Segovia, P., Purdie, D., Hengsberger, M. & Baer, Y. Observation of spin and charge collective modes in one-dimensional metallic chains. Nature 402, 504–507 (1999).

    Article  ADS  Google Scholar 

  18. Ahn, J. R., Kang, P. G., Ryang, K. D. & Yeom, H. W. Coexistence of two different Peierls distortions within an atomic scale wire: Si(553)–Au. Phys. Rev. Lett. 95, 196402 (2005).

    Article  ADS  Google Scholar 

  19. Losio, R. et al. Band splitting for Si(557)–Au: Is it spin–charge separation? Phys. Rev. Lett. 86, 4632–4635 (2001).

    Article  ADS  Google Scholar 

  20. Ahn, J. R., Yeom, H. W., Yoon, H. S. & Lyo, I-W. Metal–insulator transition in Au atomic chains on Si with two proximal bands. Phys. Rev. Lett. 91, 196403 (2003).

    Article  ADS  Google Scholar 

  21. Schäfer, J. et al. Unusual spectral behavior of charge-density waves with imperfect nesting in a quasi-one-dimensional metal. Phys. Rev. Lett. 91, 066401 (2003).

    Article  ADS  Google Scholar 

  22. Meden, V. & Schönhammer, K. Spectral functions for the Tomonaga–Luttinger model. Phys. Rev. B 46, 15753–15760 (1992).

    Article  ADS  Google Scholar 

  23. Schönhammer, K. & Meden, V. Correlation effects in photoemission from low dimensional metals. J. Electron. Spectrosc. 62, 225–236 (1993).

    Article  Google Scholar 

  24. Mishchenko, E. G., Andreev, A. V. & Glazman, L. I. Zero-bias anomaly in disordered wires. Phys. Rev. Lett. 87, 246801 (2001).

    Article  ADS  Google Scholar 

  25. Bartosch, L. & Kopietz, P. Zero bias anomaly in the density of states of low-dimensional metals. Eur. Phys. J. B 28, 29–36 (2002).

    Article  ADS  Google Scholar 

  26. Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).

    Article  ADS  Google Scholar 

  27. Kane, C. L. & Fisher, M. P. A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 68, 1220–1223 (1992).

    Article  ADS  Google Scholar 

  28. Eggert, S., Johannesson, H. & Mattsson, A. Boundary effects on spectral properties of interacting electrons in one dimension. Phys. Rev. Lett. 76, 1505–1508 (1996).

    Article  ADS  Google Scholar 

  29. Schulz, H. J. Long-range Coulomb interactions in quasi-one-dimensional conductors. J. Phys. C 16, 6769–6787 (1983).

    Article  ADS  Google Scholar 

  30. Meyer, S. et al. Strictly one-dimensional electron system in Au chains on Ge(001) revealed by photoelectron k-space mapping. Phys. Rev. B 83, 121411(R) (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Eggert, V. Meden, B. Trauzettel, P. Recher and F. F. Assaad for theoretical discussions. We also acknowledge support by the Deutsche Forschungsgemeinschaft under grants Scha 1510/2 and FOR 1162.

Author information

Authors and Affiliations

Authors

Contributions

C.B., J.S., S. Mietke, S. Meyer, A.D. and M.L. carried out the experiments, R.M. provided STS expertise, X.Y.C. and L.P. ran the photoemission station, C.B., J.S., S. Mietke, S. Meyer and A.D. analysed the data, C.B., J.S. and S. Meyer made the figures, J.S. and R.C. wrote the text and all authors contributed to critical discussion of the data.

Corresponding author

Correspondence to J. Schäfer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumenstein, C., Schäfer, J., Mietke, S. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nature Phys 7, 776–780 (2011). https://doi.org/10.1038/nphys2051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing