Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nonlinear phononics as an ultrafast route to lattice control

Abstract

Two types of coupling between electromagnetic radiation and a crystal lattice have so far been identified experimentally. The first is the direct coupling of light to infrared-active vibrations carrying an electric dipole. The second is indirect, involving electron–phonon coupling and occurring through excitation of the electronic system; stimulated Raman scattering1,2,3 is one example. A third path, ionic Raman scattering (IRS; refs 4, 5), was proposed 40 years ago. It was posited that excitation of an infrared-active phonon could serve as the intermediate state for Raman scattering, a process that relies on lattice anharmonicities rather than electron–phonon interactions6. Here, we report an experimental demonstration of IRS using femtosecond excitation and coherent detection of the lattice response. We show how this mechanism is relevant to ultrafast optical control in solids: a rectified phonon field can exert a directional force onto the crystal, inducing an abrupt displacement of the atoms from their equilibrium positions. IRS opens up a new direction for the optical control of solids in their electronic ground state7,8,9, different from carrier excitation10,11,12,13,14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mid-infrared versus near-infrared excitation.
Figure 2: Resonant enhancement at the vibrational mode.
Figure 3: Carrier-envelope phase stable excitation.

Similar content being viewed by others

References

  1. Dhar, L., Rogers, J. A. & Nelson, K. A. Time-resolved vibrational spectroscopy in the impulsive limit. Chem. Rev. 94, 157–193 (1994).

    Article  Google Scholar 

  2. Merlin, R. Generating coherent THz phonons with light pulses. Solid State Commun. 102, 207–220 (1997).

    Article  ADS  Google Scholar 

  3. Dekorsy, T., Cho, G. C. & Kurz, H. in Light Scattering in Solids VIII Vol. 76 (eds Cardona, M. & Güntherodt, G.) 169–209 (Topics in Appl. Phys., Springer, 2000).

    Book  Google Scholar 

  4. Wallis, R. F. & Maradudin, A. A. Ionic Raman effect II. The first-order ionic Raman effect. Phys. Rev. B 3, 2063–2075 (1971).

    Article  ADS  Google Scholar 

  5. Martin, T. P. & Genzel, L. Ionic Raman scattering and ionic frequency mixing. Phys. Status Solide B 61, 493–502 (1974).

    Article  ADS  Google Scholar 

  6. Mills, D. L. Ionic contribution to the Raman tensor of insulators. Phys. Rev. B 35, 9278–9283 (1987).

    Article  ADS  Google Scholar 

  7. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  ADS  Google Scholar 

  8. Tobey, R. I., Prabhakaran, D., Boothroyd, A. T. & Cavalleri, A. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: Evidence for non-thermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

    Article  ADS  Google Scholar 

  9. Fausti, D. et al. Light induced superconductivity in a striped-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  10. Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

    Article  ADS  Google Scholar 

  11. Fiebig, M., Miyano, K., Tomioka, Y. & Tokura, Y. Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3 . Science 280, 1925–1928 (1998).

    Article  ADS  Google Scholar 

  12. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid–solid phase transition. Phys. Rev. Lett. 87, 237401 (2001).

    Article  ADS  Google Scholar 

  13. Cavalleri, A., Rini, M. & Schoenlein, R. W. Ultra-broadband femtosecond measurements of the photo-induced phase transition in VO2: From the mid-infrared to the hard X-rays. J. Phys. Soc. Jpn 75, 011004 (2007).

    Article  ADS  Google Scholar 

  14. Perfetti, L. et al. Time evolution of the electronic structure of 1T–TaS2 through the insulator-metal transition. Phys. Rev. Lett. 97, 067402 (2006).

    Article  ADS  Google Scholar 

  15. Von der Linde, D. & Lambrich, R. Direct measurement of hot-electron relaxation by picosecond spectroscopy. Phys. Rev. Lett. 42, 1090–1093 (1979).

    Article  ADS  Google Scholar 

  16. Kuznetsov, A. V. & Stanton, C. J. Theory of coherent phonon oscillations in semiconductors. Phys. Rev. Lett. 73, 3243–3246 (1994).

    Article  ADS  Google Scholar 

  17. Garrett, G. A., Albrecht, T. F., Whitaker, J. F. & Merlin, R. Coherent THz phonons driven by light pulses and the Sb problem: What is the mechanism? Phys. Rev. Lett. 77, 3661–3664 (1996).

    Article  ADS  Google Scholar 

  18. Stevens, T. E., Kuhl, J. & Merlin, R. Coherent phonon generation and the two stimulated Raman tensors. Phys. Rev. B 65, 144304 (2002).

    Article  ADS  Google Scholar 

  19. Mayer, A. & Keilmann, F. Far-infrared nonlinear optics. I. χ(2) near ionic resonance. Phys. Rev. B 33, 6954–6961 (1986).

    Article  ADS  Google Scholar 

  20. Dekorsy, T., Yakovlev, V. A., Seidel, W., Helm, M. & Keilmann, F. Infrared-phonon–polariton resonance of the nonlinear susceptibility in GaAs. Phys. Rev. Lett. 90, 055508 (2003).

    Article  ADS  Google Scholar 

  21. Hase, M., Kitajima, M., Nakashima, S-I. & Mizoguchi, K. Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation. Phys. Rev. Lett. 88, 067401 (2002).

    Article  ADS  Google Scholar 

  22. Zener, C. Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951).

    Article  ADS  Google Scholar 

  23. Anderson, P. W. & Hasegawa, H. Considerations on double exchange. Phys. Rev. 100, 675–681 (1955).

    Article  ADS  Google Scholar 

  24. De Gennes, P. G. Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141–154 (1960).

    Article  ADS  Google Scholar 

  25. Okimoto, Y., Katsufuji, T., Ishikawa, T., Arima, T. & Tokura, Y. Variation of electronic structure in La1−x Sr x MnO3 (0=x=0.3) as investigated by optical conductivity spectra. Phys. Rev. B 55, 4206–4214 (1997).

    Article  ADS  Google Scholar 

  26. Abrashev, M. V. et al. Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3 . Phys. Rev. B 59, 4146–4153 (1999).

    Article  ADS  Google Scholar 

  27. Granado, E. et al. Phonon Raman scattering in R1−x A x MnO3+δ (R=La,Pr;A=Ca,Sr). Phys. Rev. B 58, 11435–11440 (1998).

    Article  ADS  Google Scholar 

  28. Ogasawara, T. et al. Photoinduced spin dynamics in La0.6Sr0.4MnO3 observed by time-resolved magneto-optical Kerr spectroscopy. Phys. Rev. B 68, 180407 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  29. Zeiger, H. J. et al. Theory for displacive excitation of coherent phonons. Phys. Rev. B 45, 768–778 (1992).

    Article  ADS  Google Scholar 

  30. Manzoni, C., Först, M., Ehrke, H. & Cavalleri, A. Single-Shot detection and direct control of carrier phase drift of mid-infrared pulses. Opt. Lett. 35, 757–759 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Max Planck Society through institutional support for the Max Planck Research Group for Structural Dynamics at the University of Hamburg, and was further supported in part by the US Air Force Office of Scientific Research under contract FA 9550-08-01-0340 through the Multidisciplinary University Research Initiative Program.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and M.F. conceived and coordinated the project. M.F. and C.M. developed the experimental apparatus and carried out the experiments. Y. Tomioka and Y. Tokura provided the samples. M.F., C.M., and S.K. analysed the experimental data and interpreted these together with A.C. and R.M.. R.M. developed the analytic theory of Raman scattering. M.F., R.M., and A.C. wrote the manuscript.

Corresponding authors

Correspondence to M. Först or A. Cavalleri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Först, M., Manzoni, C., Kaiser, S. et al. Nonlinear phononics as an ultrafast route to lattice control. Nature Phys 7, 854–856 (2011). https://doi.org/10.1038/nphys2055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing