Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface

Abstract

LaAlO3 and SrTiO3 are insulating, non-magnetic oxides, yet the interface between them exhibits a two-dimensional electron system with high electron mobility1, superconductivity at low temperatures2,3,4,5,6 and electric-field-tuned metal–insulator and superconductor–insulator phase transitions3,6,7,8. Bulk magnetization and magnetoresistance measurements also indicate some form of magnetism depending on preparation conditions5,9,10,11 and a tendency towards nanoscale electronic phase separation10. Here we use local imaging of the magnetization and magnetic susceptibility to directly observe a landscape of ferromagnetism, paramagnetism and superconductivity. We find submicrometre patches of ferromagnetism in a uniform background of paramagnetism, with a non-uniform, weak diamagnetic superconducting susceptibility at low temperature. These results demonstrate the existence of nanoscale phase separation as indicated by theoretical predictions based on nearly degenerate interface sub-bands associated with the Ti orbitals12,13. The magnitude and temperature dependence of the paramagnetic response indicate that the vast majority of the electrons at the interface are localized14, and do not contribute to transport measurements3,6,7. In addition to the implications for magnetism, the existence of a two-dimensional superconductor at an interface with highly broken inversion symmetry and a ferromagnetic landscape in the background indicates the potential for exotic superconducting phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of SQUID images on LAO/STO and δ-doped STO samples.
Figure 2: Analysis of the dipole distribution.
Figure 3: Paramagnetic signal on patterned LAO/STO sample.

Similar content being viewed by others

References

  1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  2. Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    Article  ADS  Google Scholar 

  3. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    Article  ADS  Google Scholar 

  4. Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin–orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

    Article  ADS  Google Scholar 

  5. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107, 056802 (2011).

    Article  ADS  Google Scholar 

  6. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103, 226802 (2009).

    Article  ADS  Google Scholar 

  7. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  ADS  Google Scholar 

  8. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nature Mater. 7, 298–302 (2008).

    Article  ADS  Google Scholar 

  9. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493–496 (2007).

    Article  ADS  Google Scholar 

  10. Ariando, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Commun. 2, 188 (2011).

    Article  Google Scholar 

  11. Seri, S. & Klein, L. Antisymmetric magnetoresistance of the SrTiO3/LaAlO3 interface. Phys. Rev. B 80, 180410 (2009).

    Article  ADS  Google Scholar 

  12. Popović, Z. S., Satpathy, S. & Martin, R. M. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101, 256801 (2008).

    Article  ADS  Google Scholar 

  13. Pentcheva, R. & Pickett, W. E. Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74, 035112 (2006).

    Article  ADS  Google Scholar 

  14. Sing, M. et al. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102, 176805 (2009).

    Article  ADS  Google Scholar 

  15. Aoki, D. et al. Coexistence of superconductivity and ferromagnetism in URhGe. Nature 413, 613–616 (2001).

    Article  ADS  Google Scholar 

  16. Saxena, S. S. et al. Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 . Nature 406, 587–592 (2000).

    Article  ADS  Google Scholar 

  17. Bulaevskii, L. N., Buzdin, A. I., Kulic, M. L. & Panjukov, S. V. Coexistence of superconductivity and magnetism. Theoretical predictions and experimental results. Adv. Phys. 34, 175–261 (1985).

    Article  ADS  Google Scholar 

  18. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  19. Tallon, J. et al. Coexisting ferromagnetism and superconductivity in hybrid rutheno-cuprate superconductors. Appl. Supercond. 9, 1696–1699 (1999).

    Article  ADS  Google Scholar 

  20. Huijben, M. et al. Structure property relation of SrTiO3/LaAlO3 interfaces. Adv. Mater. 21, 1665–1677 (2009).

    Article  Google Scholar 

  21. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  ADS  Google Scholar 

  22. Tafuri, F., Kirtley, J. R., Medaglia, P. G., Orgiani, P. & Balestrino, G. Magnetic imaging of Pearl vortices in artificially layered (Ba0.9Nd0.1CuO2+x)m/(CaCuO2)n systems. Phys. Rev. Lett. 92, 157006 (2004).

    Article  ADS  Google Scholar 

  23. Luan, L. et al. Local measurement of the penetration depth in the pnictide superconductor Ba(Fe0.95Co0.05)2As2 . Phys. Rev. B 81, 100501 (2010).

    Article  ADS  Google Scholar 

  24. Hicks, C. W. et al. Evidence for a nodal energy gap in the iron-pnictide superconductor LaFePO from penetration depth measurements by scanning SQUID susceptometry. Phys. Rev. Lett. 103, 127003 (2009).

    Article  ADS  Google Scholar 

  25. Kogan, V. G. Meissner response of anisotropic superconductors. Phys. Rev. B 68, 104511 (2003).

    Article  ADS  Google Scholar 

  26. Kalisky, B. et al. Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1−xCox)2As2 single crystals: Evidence for an enhanced superfluid density at twin boundaries. Phys. Rev. B 81, 184513 (2010).

    Article  ADS  Google Scholar 

  27. Caviglia, A. D. et al. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105, 236802 (2010).

    Article  ADS  Google Scholar 

  28. Bluhm, H., Bert, J. A., Koshnick, N. C., Huber, M. E. & Moler, K. A. Spinlike susceptibility of metallic and insulating thin films at low temperature. Phys. Rev. Lett. 103, 026805 (2009).

    Article  ADS  Google Scholar 

  29. Li, L., Richter, C., Mannhart, J. & Ashoori, R. C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nature Phys. 7,http://dx.doi.org/10.1038/nphys2080 (2011).

  30. Huber, M. E. et al. Gradiometric micro-SQUID susceptometer for scanning measurements of mesoscopic samples. Rev. Sci. Instrum. 79, 053704 (2008).

    Article  ADS  Google Scholar 

  31. Björnsson, P. G., Gardner, B. W., Kirtley, J. R. & Moler, K. A. Scanning superconducting quantum interference device microscope in a dilution refrigerator. Rev. Sci. Instrum. 72, 4153–4158 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Huber for assistance in SQUID design and fabrication. This work was primarily supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-AC02-76SF00515. B.K. acknowledges support from FENA.

Author information

Authors and Affiliations

Authors

Contributions

SQUID measurements: J.A.B. and B.K. Analysis: J.A.B. and B.K. with ideas developed with H.Y.H. and K.A.M. Sample growth: C.B., M.K., Y.H., and H.Y.H. Manuscript preparation: J.A.B., H.Y.H and K.A.M., with input from all co-authors.

Corresponding author

Correspondence to Kathryn A. Moler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bert, J., Kalisky, B., Bell, C. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nature Phys 7, 767–771 (2011). https://doi.org/10.1038/nphys2079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2079

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing