Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stacking-dependent band gap and quantum transport in trilayer graphene

Abstract

Graphene1,2,3 is an extraordinary two-dimensional (2D) system with chiral charge carriers and fascinating electronic, mechanical and thermal properties4,5. In multilayer graphene6,7, stacking order provides an important yet rarely explored degree of freedom for tuning its electronic properties8. For instance, Bernal-stacked trilayer graphene (B-TLG) is semi-metallic with a tunable band overlap, and rhombohedral-stacked trilayer graphene (r-TLG) is predicted to be semiconducting with a tunable band gap9,10,11,12,13,14,15,16,17. These multilayer graphenes are also expected to exhibit rich novel phenomena at low charge densities owing to enhanced electronic interactions and competing symmetries. Here we demonstrate the dramatically different transport properties in TLG with different stacking orders, and the unexpected spontaneous gap opening in charge neutral r-TLG. At the Dirac point, B-TLG remains metallic, whereas r-TLG becomes insulating with an intrinsic interaction-driven gap 6 meV. In magnetic fields, well-developed quantum Hall (QH) plateaux in r-TLG split into three branches at higher fields. Such splitting is a signature of the Lifshitz transition, a topological change in the Fermi surface, that is found only in r-TLG. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of suspended B-TLG (ABA) and r-TLG (ABC) devices and their band structures.
Figure 2: Different Raman and transport characteristics of B- and r-TLG.
Figure 3: Transport data from B-TLG and r-TLG devices.
Figure 4: Magnetotransport data of a r-TLG device.

Similar content being viewed by others

References

  1. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  4. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  5. Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011).

    Article  ADS  Google Scholar 

  6. Liu, Y. P., Goolaup, S., Murapaka, C., Lew, W. S. & Wong, S. K. Effect of magnetic field on the electronic transport in trilayer graphene. ACS Nano 4, 7087–7092 (2010).

    Article  Google Scholar 

  7. Zhu, W. J., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Article  ADS  Google Scholar 

  8. Mak, K. F., Shan, J. & Heinz, T. F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010).

    Article  ADS  Google Scholar 

  9. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  10. Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    Article  ADS  Google Scholar 

  11. Koshino, M. & McCann, E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys. Rev. B 79, 125443 (2009).

    Article  ADS  Google Scholar 

  12. Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech. 4, 383–388 (2009).

    Article  ADS  Google Scholar 

  13. Zhang, F., Sahu, B., Min, H. K. & MacDonald, A. H. Band structure of ABC-stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Article  ADS  Google Scholar 

  14. Manes, J. L., Guinea, F. & Vozmediano, M. A. H. Existence and topological stability of Fermi points in multilayered graphene. Phys. Rev. B 75, 155424 (2007).

    Article  ADS  Google Scholar 

  15. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Article  ADS  Google Scholar 

  16. Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81, 125304 (2010).

    Article  ADS  Google Scholar 

  17. Avetisyan, A. A., Partoens, B. & Peeters, F. M. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010).

    Article  ADS  Google Scholar 

  18. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. A. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    Article  ADS  Google Scholar 

  19. Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011).

    Article  ADS  Google Scholar 

  20. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  ADS  Google Scholar 

  21. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  ADS  Google Scholar 

  22. Bolotin, K. I., Sikes, K. J., Hone, J., Stormer, H. L. & Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008).

    Article  ADS  Google Scholar 

  23. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article  ADS  Google Scholar 

  24. Vafek, O. & Yang, K. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys. Rev. B 81, 041401 (2010).

    Article  ADS  Google Scholar 

  25. Zhang, F., Min, H., Polini, M. & MacDonald, A. H. Spontaneous inversion symmetry breaking in graphene bilayers. Phys. Rev. B 81, 041402 (2010).

    Article  ADS  Google Scholar 

  26. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  ADS  Google Scholar 

  27. McClure, J. W. Diamagnetism of graphite. Phys. Rev. 104, 666–671 (1956).

    Article  ADS  Google Scholar 

  28. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  29. Ezawa, M. Intrinsic Zeeman effect in graphene. J. Phys. Soc. Jpn 76, 094701 (2007).

    Article  ADS  Google Scholar 

  30. Koshino, M. & McCann, E. Trigonal warping and Berry’s phase N π in ABC-stacked multilayer graphene. Phys. Rev. B 80, 165409 (2009).

    Article  ADS  Google Scholar 

  31. McCann, E. & Koshino, M. Spin–orbit coupling and broken spin degeneracy in multilayer graphene. Phys. Rev. B 81, 241409 (2010).

    Article  ADS  Google Scholar 

  32. Bao, W. et al. Magnetoconductance oscillations and evidence for fractional quantum Hall states in suspended bilayer and trilayer graphene. Phys. Rev. Lett. 105, 246601 (2010).

    Article  ADS  Google Scholar 

  33. Abanin, D. A. & Levitov, L. S. Conformal invariance and shape-dependent conductance of graphene samples. Phys. Rev. B 78, 035416 (2008).

    Article  ADS  Google Scholar 

  34. Lemonik, Y., Aleiner, I. L., Toke, C. & Fal’ko, V. I. Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene. Phys. Rev. B 82, 201408 (2010).

    Article  ADS  Google Scholar 

  35. Bao, W. Z. et al. Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 3, 98–102 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ONR/DMEA H94003-10-2-1003, NSF CAREER DMR/0748910, ONR N00014-09-1-0724, and the FENA Focus Center. D.S. acknowledges the support by NHMFL UCGP #5068. The trenches are fabricated at UCSB. Part of this work was performed at NHMFL which is supported by NSF/DMR-0654118, the State of Florida, and DOE. S.B.C. acknowledges the support by ONR/N00014-10-1-0511. M.K. and E.M. acknowledge the support by JST-EPSRC EP/H025804/1.

Author information

Authors and Affiliations

Contributions

C.N.L. and W.B. conceived the experiments; W.B. and D.T. isolated and identified graphene sheets; W.B., L.J., Y.L., J.V., G.L, B.S. and D.S. performed transport measurements; W.B., L.J., M.A. and S.B.C. performed Raman measurements; C.N.L., M.B., W.B., L.J. and J.V. interpreted and analysed the data; M.K. and E.M. interpreted data and performed theoretical calculations; C.N.L., M.B., W.B. and E.M. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to C. N. Lau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, W., Jing, L., Velasco, J. et al. Stacking-dependent band gap and quantum transport in trilayer graphene. Nature Phys 7, 948–952 (2011). https://doi.org/10.1038/nphys2103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing