Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable metal–insulator transition in double-layer graphene heterostructures

Abstract

Disordered conductors with resistivity above the resistance quantum h/e2 should exhibit an insulating behaviour at low temperatures, a universal phenomenon known as a strong (Anderson) localization1,2,3. Observed in a multitude of materials, including damaged graphene and its disordered chemical derivatives4,5,6,7,8,9,10, Anderson localization has not been seen in generic graphene, despite its resistivity near the neutrality point reaching ≈h/e2 per carrier type4,5. It has remained a puzzle why graphene is such an exception. Here we report a strong localization and the corresponding metal–insulator transition in ultra-high-quality graphene. The transition is controlled externally, by changing the carrier density in another graphene layer placed at a distance of several nm and decoupled electrically. The entire behaviour is explained by electron–hole puddles that disallow localization in standard devices but can be screened out in double-layer graphene. The localization that occurs with decreasing rather than increasing disorder is a unique occurrence, and the reported double-layer heterostructures presents a new experimental system that invites further studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron transport in graphene–BN heterostructures.
Figure 2: Resistivity of the studied layer at different T for high and low doping of the control layer.
Figure 3: Resistivity of the studied layer in the insulating regime at various B.

Similar content being viewed by others

References

  1. Kramer, B. & Mackinnon, A. Localization—theory and experiment. Rep. Prog. Phys. 56, 1469–1564 (1993).

    Article  ADS  Google Scholar 

  2. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  ADS  Google Scholar 

  3. Evers, F. & Mirlin, A. D. Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008).

    Article  ADS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  5. Castro Neto, A. H. et al. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  6. Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  ADS  Google Scholar 

  7. Zhou, S. Y., Siegel, D. A., Fedorov, A. V. & Lanzara, A. Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101, 086402 (2008).

    Article  ADS  Google Scholar 

  8. Bostwick, A. et al. Quasiparticle transformation during a metal–insulator transition in graphene. Phys. Rev. Lett. 103, 056404 (2009).

    Article  ADS  Google Scholar 

  9. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323, 610–613 (2009).

    Article  ADS  Google Scholar 

  10. Chen, J. H. et al. Defect scattering in graphene. Phys. Rev. Lett. 102, 236805 (2009).

    Article  ADS  Google Scholar 

  11. Adam, S. & Das Sarma, S. Boltzmann transport and residual conductivity in bilayer graphene. Phys. Rev. B 77, 115436 (2008).

    Article  ADS  Google Scholar 

  12. Nersesyan, A. A., Tsvelik, A. M. & Wenger, F. Disorder effects in 2-dimensional d-wave superconductors. Phys. Rev. Lett. 72, 2628–2631 (1994).

    Article  ADS  Google Scholar 

  13. Ludwig, A. W. W., Fisher, M. P. A., Shankar, R. & Grinstein, G. Integer quantum Hall transition—an alternative approach and exact results. Phys. Rev. B 50, 7526–7552 (1994).

    Article  ADS  Google Scholar 

  14. Hatsugai, Y., Wen, X. G. & Kohmoto, M. Disordered critical wave functions in random-bond models in two dimensions: Random-lattice fermions at E=0 without doubling. Phys. Rev. B 56, 1061–1064 (1997).

    Article  ADS  Google Scholar 

  15. Ryu, S. & Hatsugai, Y. Singular density of states of disordered Dirac fermions in chiral models. Phys. Rev. B 65, 033301 (2002).

    Article  ADS  Google Scholar 

  16. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    Article  ADS  Google Scholar 

  17. Cheianov, V. V. & Fal’ko, V. I. Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene. Phys. Rev. B 74, 041403 (2006).

    Article  ADS  Google Scholar 

  18. Aleiner, I. L. & Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 97, 236801 (2006).

    Article  ADS  Google Scholar 

  19. McCann, E. et al. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 97, 146805 (2006).

    Article  ADS  Google Scholar 

  20. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4, 144–148 (2008).

    Article  ADS  Google Scholar 

  21. Xue, J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  ADS  Google Scholar 

  22. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunnelling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  ADS  Google Scholar 

  23. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl Acad. Sci. USA 104, 18392–18397 (2007).

    Article  ADS  Google Scholar 

  24. Cheianov, V. V., Fal’ko, V. I., Altshuler, B. L. & Aleiner, I. L. Random resistor network model of minimal conductivity in graphene. Phys. Rev. Lett. 99, 176801 (2007).

    Article  ADS  Google Scholar 

  25. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  26. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  27. Tse, W. K., Hu, B. Y. K. & Das Sarma, S. Theory of Coulomb drag in graphene. Phys. Rev. B 76, 081401 (2007).

    Article  ADS  Google Scholar 

  28. Ponomarenko, L. A. et al. Effect of a high- κ environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

    Article  ADS  Google Scholar 

  29. Ni, Z. H. et al. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 10, 3868–3872 (2010).

    Article  ADS  Google Scholar 

  30. Tikhonenko, F. V., Horsell, D. W., Gorbachev, R. V. & Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 100, 056802 (2008).

    Article  ADS  Google Scholar 

  31. Tikhonenko, F. V., Kozikov, A. A., Savchenko, A. K. & Gorbachev, R. V. Transition between electron localization and antilocalization in graphene. Phys. Rev. Lett. 103, 226801 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Katsnelson, A. MacDonald and A. C. Neto for useful discussions. This work was supported by the Engineering and Physical Sciences Research Council (UK), the Royal Society, the Office of Naval Research, the Air Force Office of Scientific Research and the Körber Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.V.G. designed the experiments; L.A.P. and S.V.M. carried out measurements; R.V.G. and R.J. fabricated the devices; L.A.P., R.V.G. and A.K.G. carried out data analysis; L.A.P., A.A.Z. and A.K.G. wrote the article. All the authors contributed to discussions. L.A.P. and R.V.G. contributed to the work equally.

Corresponding author

Correspondence to R. V. Gorbachev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomarenko, L., Geim, A., Zhukov, A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys 7, 958–961 (2011). https://doi.org/10.1038/nphys2114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing