Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-stage orbital order and dynamical spin frustration in KCuF3

Abstract

The orbital degree of freedom is integral to many exotic phenomenain condensed matter, including colossal magnetoresistance and unconventional superconductivity. The standard model of orbital physics is the Kugel–Khomskii model1, which first explained the symmetry of orbital and magnetic order in KCuF3 and has since been applied to virtually all orbitally active materials2. Here we present Raman and X-ray scattering measurements showing that KCuF3 exhibits a previously unidentified structural phase transition at T=50 K, involving rotations of the CuF6 octahedra. These rotations are quasi-ordered and exhibit glassy hysteresis, but serve to stabilize Néel spin order at T=39 K. We propose an explanation for these effects by supplementing the Kugel–Khomskii model with a direct, orbital exchange term that is driven by a combination of electron–electron interactions and ligand distortions3. The effect of this term is to create a near degeneracy that dynamically frustrates the spin subsystem but is lifted at low temperature by subdominant, orbital–lattice interactions. Our results suggest that direct orbital exchange may be crucial for the physics of many orbitally active materials, including manganites, ruthenates and the iron pnictides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the Raman-active phonons in KCuF3, and their corresponding eigenvectors showing displacements of the F ions16.
Figure 2: Nearly degenerate hybrid orbital states.
Figure 3: Magnetic and structural X-ray scattering from KCuF3.

Similar content being viewed by others

References

  1. Kugel, K. I. & Khomskii, D. I. Crystal structure and magnetic properties of substances with orbital degeneracy. Sov. Phys.-JETP 37, 725–730 (1973).

    ADS  Google Scholar 

  2. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 21, 462–468 (2000).

    Article  ADS  Google Scholar 

  3. Mostovoy, M. V. & Khomskii, D. I. Orbital ordering in charge transfer insulators. Phys. Rev. Lett. 92, 167201 (2004).

    Article  ADS  Google Scholar 

  4. Okazaki, A. & Suemune, Y. The crystal structure of KCuF3 . J. Phys. Soc. Jpn 16, 176–183 (1961).

    Article  ADS  Google Scholar 

  5. Hutchings, M. T., Samuelsen, E. J., Shirane, G. & Hirakawa, K. Neutron diffraction determination of the antiferromagnetic structure of KCuF3 . Phys. Rev. 188, 919–923 (1969).

    Article  ADS  Google Scholar 

  6. Hidaka, M., Eguchi, T. & Yamada, I. New superlattice crystal structure in KCuF3 revealed by x-ray diffraction experiments. J. Phys. Soc. Jpn 67, 2488–2494 (1998).

    Article  ADS  Google Scholar 

  7. Paolasini, L., Caciuffo, R., Sollier, A., Ghigna, P. & Altarelli, M. Coupling between spin and orbital degrees of freedom in KCuF3 . Phys. Rev. Lett. 88, 106403 (2002).

    Article  ADS  Google Scholar 

  8. Polinger, V. The Jahn–Teller-Effect: Fundamentals and Implications for Physics and Chemistry 685–725 (Springer, 2009).

    Book  Google Scholar 

  9. Sajita, S. K., Axe, J. D., Shirane, G., Yoshizawa, H. & Hirakawa, K. Neutron scattering study of spin waves in one-dimensional antiferromagnet KCuF3 . Phys. Rev. B 21, 2001–2007 (1980).

    Article  ADS  Google Scholar 

  10. Lake, B., Tennant, D. A., Frost, C. D. & Nagler, S. E. Quantum criticality and universal scaling of a quantum antiferromagnet. Nature Mater. 4, 329–334 (2005).

    Article  ADS  Google Scholar 

  11. Oleś, A. M., Khaliullin, G., Horsch, P. & Feiner, L. F. Fingerprints of spin-orbital physics in cubic Mott insulators: Magnetic exchange interaction and optical spectral weights. Phys. Rev. B 72, 214431 (2005).

    Article  ADS  Google Scholar 

  12. Mazzoli, C., Allodi, G., De Renzi, R., Guidi, G. & Ghigna, P. Zeeman perturbed nuclear quadrupole resonance investigation of orbitally ordered KCuF3 . J. Magn. Magn. Mater. 242, 935–938 (2002).

    Article  ADS  Google Scholar 

  13. Yamada, I. & Kato, N. Multi-sublattice magnetic structure of KCuF3 caused by the antiferromagnetic exchange interaction: Antiferromagnetic resonance measurements. J. Phys. Soc. Jpn 63, 289–297 (1994).

    Article  ADS  Google Scholar 

  14. Eremin, M. V. et al. Dynamical Dzyaloshinsky–Moriya interaction in KCuF3 . Phys. Rev. Lett. 101, 147601 (2008).

    Article  ADS  Google Scholar 

  15. Deisenhofer, J. et al. Optical evidence for symmetry changes above the Néel transition of KCuF3 . Phys. Rev. Lett. 101, 157406 (2008).

    Article  ADS  Google Scholar 

  16. Ueda, T., Sugawara, K., Kondo, T. & Yamada, I. Raman scattering studies of phonons in KCuF3 . Sol. St. Commun. 80, 801–805 (1991).

    Article  ADS  Google Scholar 

  17. Feiner, L. F., Oles, A. M. & Zaanen, J. Quantum melting of magnetic order due to orbital fluctuations. Phys. Rev. Lett. 78, 2799–2802 (1997).

    Article  ADS  Google Scholar 

  18. Lin, C. & Millis, A. J. Theoretical description of pseudocubic manganites. Phys. Rev. B 78, 174419 (2008).

    Article  ADS  Google Scholar 

  19. Pavarini, E., Koch, E. & Lichtenstein, A. I. Mechanism for orbital ordering in KCuF3 . Phys. Rev. Lett. 101, 266405 (2008).

    Article  ADS  Google Scholar 

  20. Sboychakov, A. O., Kugel, K. I., Rakhmanov, A. L. & Khomskii, D. I. Relationship between orbital structure and lattice distortions in Jahn–Teller systems. Phys. Rev. B 83, 205123 (2011).

    Article  ADS  Google Scholar 

  21. Snow, C. S. et al. Pressure-tuned collapse of the Mott-like state in Can+1RunO3n+1 (n=1,2): Raman spectroscopic studies. Phys. Rev. Lett. 89, 226401 (2002).

    Article  ADS  Google Scholar 

  22. Fang, Z., Terakura, K. & Nagaosa, N. Orbital physics in ruthenates: First-principles studies. New J. Phys. 7, 66 (2005).

    Article  ADS  Google Scholar 

  23. Kruger, F., Kumar, S., Zaanen, J. & van den Brink, J. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    Article  ADS  Google Scholar 

  24. Binggelli, N. & Altarelli, M. Orbital ordering, Jahn–Teller distortion, and resonant x-ray scattering in KCuF3 . Phys. Rev. B 70, 085117 (2004).

    Article  ADS  Google Scholar 

  25. Hirakawa, K. & Kurogi, Y. One-dimensional antiferromagnetic properties of KCuF3 . Suppl. Prog. Theor. Phys. 46, 147–161 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge discussions with D. I. Khomskii, M. V. Mostovoy, A. J. Millis, A. K. Sood and H. R. Krishnamurthy. This work was supported by the US Department of Energy through grant DE-FG02-07ER46453, with soft-X-ray studies supported by DE-FG02-06ER46285.The Advanced Photon Source was supported by DE-AC02-06CH11357 and the NSLS by DE-AC02-98CH10886. CHESS and ChemMatCARS are supported by National Science Foundation grants CHE-0822838 and DMR-0225180, respectively. S.L. gratefully acknowledges financial support from the Department of Science and Technology, Government of India, through a Ramanujam Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and J.C.T.L. grew the crystals. S.Y. carried out Raman experiments. J.C.T.L., Y.I.J., S.S., Y.F., Y.G., A.R. and K.F. carried out the X-ray experiments. S.L., P.M.G. and P.A. developed the model. P.A. and S.L.C. wrote the paper.

Corresponding authors

Correspondence to S. Lance Cooper or Peter Abbamonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Yuan, S., Lal, S. et al. Two-stage orbital order and dynamical spin frustration in KCuF3. Nature Phys 8, 63–66 (2012). https://doi.org/10.1038/nphys2117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing