Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

This article has been updated

Abstract

Orbital physics plays a significant role for a vast number of important phenomena in complex condensed-matter systems, including high-temperature superconductivity and unconventional magnetism. In contrast, phenomena in superfluids—in particular in ultracold quantum gases—are typically well described by the lowest orbital and a real order parameter1. Here, we report on the observation of a multi-orbital superfluid phase with a complex order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighbouring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital contributions favoured by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid and the twisted superfluid phase, which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal and twisted superfluid phases.
Figure 2: Symmetry breaking in momentum space.
Figure 3: Quantum phase transition to a twisted superfluid phase.
Figure 4: Observation of the NSF–TSF quantum phase transition.

Similar content being viewed by others

Change history

  • 15 November 2011

    In the version of this Letter originally published online, the square-root signs in the formula in Fig. 3a were displayed incorrectly. This has been corrected in all versions of the Letter.

References

  1. Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation (Oxford Univ.Press, 2003).

    MATH  Google Scholar 

  2. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  3. Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  ADS  Google Scholar 

  4. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  5. Zhang, Y., Tan, J. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  6. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

    Article  ADS  Google Scholar 

  7. Zhu, A-L., Wang, B. & Duan, L-M. Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 98, 260402 (2007).

    Article  ADS  Google Scholar 

  8. Wu, C. & Das Sarma, S. p x,y-orbital counterpart of graphene: Cold atoms in the honeycomb optical lattice. Phys. Rev. B 77, 235107 (2008).

    Article  ADS  Google Scholar 

  9. Lee, K. L., Grémaud, B., Han, R., Englert, B-G. & Miniatura, C. Ultracold fermions in a graphene-type optical lattice. Phys. Rev. A 80, 043411 (2009).

    Article  ADS  Google Scholar 

  10. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  11. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204–207 (2008).

    Article  ADS  Google Scholar 

  12. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  Google Scholar 

  13. Struck, J. et al. Quantum simulation of frustrated magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  ADS  Google Scholar 

  14. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Google Scholar 

  15. Will, S. et al. Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197–201 (2010).

    Article  ADS  Google Scholar 

  16. Best, T. et al. Role of interactions in 87Rb–40K Bose–Fermi mixtures in a 3D optical lattice. Phys. Rev. Lett. 102, 030408 (2009).

    Article  ADS  Google Scholar 

  17. Lühmann, D-S., Bongs, K., Sengstock, K. & Pfannkuche, D. Self-trapping of bosons and fermions in optical lattices. Phys. Rev. Lett. 101, 050402 (2008).

    Article  ADS  Google Scholar 

  18. Lutchyn, R. M., Tewari, S. & Das Sarma, S. Loss of superfluidity by fermions in the boson Hubbard model on an optical lattice. Phys. Rev. A 79, 011606 (2009).

    Article  ADS  Google Scholar 

  19. Müller, T., Fölling, S., Widera, A. & Bloch, I. State preparation and dynamics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett. 99, 200405 (2007).

    Article  ADS  Google Scholar 

  20. Wirth, G., Ölschläger, M. & Hemmerich, A. Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice. Nature Phys. 7, 147–153 (2011).

    Article  ADS  Google Scholar 

  21. Ölschläger, M., Wirth, G. & Hemmerich, A. Unconventional superfluid order in the F band of a bipartite optical square lattice. Phys. Rev. Lett. 106, 015302 (2011).

    Article  ADS  Google Scholar 

  22. Isacsson, A. & Girvin, S. M. Multiflavor bosonic Hubbard models in the first excited Bloch band of an optical lattice. Phys. Rev. A 72, 053604 (2005).

    Article  ADS  Google Scholar 

  23. Wu, C., Liu, W. V., Moore, J. & Das Sarma, S. State preparation and dynamics of ultracold atoms in higher lattice orbitals. Phys. Rev. Lett. 97, 190406 (2006).

    Article  ADS  Google Scholar 

  24. Liu, W. V. & Wu, C. Atomic matter of nonzero-momentum Bose–Einstein condensation and orbital current order. Phys. Rev. A 74, 013607 (2006).

    Article  ADS  Google Scholar 

  25. Zhou, Q., Porto, J. V. & Das Sarma, S. Condensates induced by interband coupling in a double-well lattice. Inter-band coupling induced novel condensates in a double-well lattice. Phys. Rev. B 83, 195106 (2011).

    Article  ADS  Google Scholar 

  26. Schmaljohann, H. et al. Dynamics of F=2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work has been funded by Deutsche Forschungsgemeinschaft grants FOR 801 and GRK 1355 as well as by the Landesexzellenzinitiative Hamburg, which is supported by the Joachim Herz Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work and data analysis were done by P.S-P., J.S., D-S.L., P.W. and K.S. D-S.L. and P.S-P. carried out the theoretical calculations. P.S-P. and D-S.L. wrote the manuscript with substantial contributions by all authors.

Corresponding author

Correspondence to Klaus Sengstock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltan-Panahi, P., Lühmann, DS., Struck, J. et al. Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices. Nature Phys 8, 71–75 (2012). https://doi.org/10.1038/nphys2128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing