Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coherent control of three-spin states in a triple quantum dot

Abstract

Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications1,2,3,4. It has been suggested that triple quantum dots may provide additional tools and functionalities. These include encoding information either to obtain protection from decoherence or to permit all-electrical operation5, efficient spin busing across a quantum circuit6, and to enable quantum error correction using the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate coherent manipulation of two interacting three-spin states. We employ the Landau–Zener–Stückelberg7,8 approach for creating and manipulating coherent superpositions of quantum states9. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures10, but has not been previously demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device, three-spin states spectrum, and spin arch.
Figure 2: LZS oscillations from the two Δ′1/2−Q3/2 qubits for a wide (1,1,1) region.
Figure 3: Coherent three-spin state manipulation with a narrow (1,1,1) region
Figure 4: Magnetic field dependence of coherent three-spin state manipulation with a narrow (1,1,1) region.

Similar content being viewed by others

References

  1. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  2. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  3. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  4. Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nature Phys. 4, 776–779 (2008).

    Article  ADS  Google Scholar 

  5. DiVincenzo, D. P., Bacon, D., Kempe, J., Burkard, G & Whaley, K. B. Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000).

    Article  ADS  Google Scholar 

  6. Greentree, A. D., Cole, J. H., Hamilton, A. R. & Hollenberg, L. C. L. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70, 235317 (2004).

    Article  ADS  Google Scholar 

  7. Shevchenko, S., Ashhab, S. & Nori, F. Landau–Zener–Stückelberg interferometry. Phys. Rep. 492, 1–30 (2010).

    Article  ADS  Google Scholar 

  8. Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. Lond. A 137, 696–702 (1932).

    Article  ADS  MATH  Google Scholar 

  9. Petta, J. R., Lu, H. & Gossard, A. C. A coherent beam splitter for electronic spin states. Science 327, 669–672 (2010).

    Article  ADS  Google Scholar 

  10. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  11. Ciorga, M. et al. Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315–R16318 (2000).

    Article  ADS  Google Scholar 

  12. Elzermann, J. et al. Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003).

    Article  ADS  Google Scholar 

  13. Field, M. et al. Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311–1314 (1993).

    Article  ADS  Google Scholar 

  14. Laird, E. A. et al. Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075403 (2010).

    Article  ADS  Google Scholar 

  15. Granger, G. et al. Three-dimensional transport diagram of a triple quantum dot. Phys. Rev. B 82, 075304 (2010).

    Article  ADS  Google Scholar 

  16. Taylor, J. M. et al. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76, 035315 (2007).

    Article  ADS  Google Scholar 

  17. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  ADS  Google Scholar 

  18. Ribeiro, H., Petta, J. R. & Burkard, G. Harnessing the GaAs quantum dot nuclear spin bath for quantum control. Phys. Rev. B 82, 115445 (2010).

    Article  ADS  Google Scholar 

  19. Särkkä, J. & Harju, A. Spin dynamics at the singlet–triplet crossings in a double quantum dot. New J. Phys. 13, 043010 (2011).

    Article  ADS  Google Scholar 

  20. Brataas, A. & Rashba, E. Nuclear dynamics during Landau–Zener singlet–triplet transitions in double quantum dots. Phys. Rev. B 84, 045301 (2011).

    Article  ADS  Google Scholar 

  21. Baugh, J. et al. Solid-state NMR three-qubit homonuclear system for quantum-information processing: Control and characterization. Phys. Rev. A 73, 022305 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. G. Austing, W. Coish and E. Laird for discussions and O. Kodra for programming. A.S.S. and M.P-L. acknowledge funding from NSERC. G.G., A.K, M.P-L., and A.S.S. acknowledge funding from CIFAR. G.G. acknowledges funding from the NRC-CNRS collaboration.

Author information

Authors and Affiliations

Authors

Contributions

Z.R.W. developed and grew the 2DEG heterostructure free of telegraphic noise; A.K. fabricated the triple quantum dot device capable of reaching the few-electron regime; P.Z., L.G. and S.A.S. designed and built the high-frequency lines up to 50 GHz at millikelvin temperatures; P.Z., L.G. and G.G. ran the cryogenic equipment; L.G., G.G., S.A.S. and M.P-L. developed the pulsing techniques; G.G., L.G. and S.A.S. performed the measurements; G.G., L.G. and G.C.A. analysed the data; G.C.A. performed theoretical simulations; G.G. and A.S.S. wrote the manuscript and Supplementary Information with input from all authors; G.G., L.G. and G.C.A made the figures; G.G., L.G., G.C.A., S.A.S., M.P-L. and A.S.S. participated in discussions concerning the experimental and theoretical results; and A.S.S. supervised the project.

Corresponding author

Correspondence to A. S. Sachrajda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 975 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudreau, L., Granger, G., Kam, A. et al. Coherent control of three-spin states in a triple quantum dot. Nature Phys 8, 54–58 (2012). https://doi.org/10.1038/nphys2149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing