Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-local quantum superpositions of topological defects

Abstract

Topological defects, such as monopoles, vortex lines or domain walls, mark locations where disparate choices of a broken-symmetry vacuum elsewhere in the system lead to irreconcilable differences1,2. They are energetically costly (the energy density in their core reaches that of the prior symmetric vacuum) but topologically stable (the whole manifold would have to be rearranged to get rid of the defect). Here we show how, in a paradigmatic model of a quantum phase transition, a topological defect can be put in a non-local superposition, so that—in a region large compared with the size of its core—the order parameter of the system is ’undecided’ by being in a quantum superposition of conflicting choices of the broken symmetry. We dub such a topological Schrödinger-cat state a ‘Schrödinger kink’, and devise a version of a double-slit experiment suitable for topological defects to describe one possible manifestation of the phenomenon. Coherence detectable in such experiments will be suppressed as a consequence of interaction with the environment. We analyse the environment-induced decoherence and discuss its role in symmetry breaking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Schrödinger kink in a quantum Ising chain.
Figure 2: Interference patterns after a Schrödinger kink is released.
Figure 3: A Schrödinger kink evolved in the presence of decoherence.
Figure 4: A single kink evolved on a finite lattice with and without decoherence.

Similar content being viewed by others

References

  1. Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979).

    ADS  MathSciNet  Google Scholar 

  2. Michel, L. Symmetry defects and broken symmetry. Configurations hidden symmetry. Rev. Mod. Phys. 52, 617–651 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976).

    Article  ADS  Google Scholar 

  4. Kibble, T. W. B. Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  5. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    Article  ADS  Google Scholar 

  6. Zurek, W. H. Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions. Acta Phys. Pol. B 24, 1301–1311 (1993).

    Google Scholar 

  7. Zurek, W. H. Cosmological experiments in condensed matter systems. Phys. Rep. 276, 177–221 (1996).

    Article  ADS  Google Scholar 

  8. Kibble, T. Phase-transition dynamics in the lab and the universe. Phys. Today 60, 47–52 (September, 2007).

    Article  Google Scholar 

  9. Anglin, J. R. & Zurek, W. H. Vortices in the wake of rapid Bose–Einstein condensation. Phys. Rev. Lett. 83, 1707–1710 (1999).

    Article  ADS  Google Scholar 

  10. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    Article  ADS  Google Scholar 

  11. Dziarmaga, J. Dynamics of a quantum phase transition: Exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005).

    Article  ADS  Google Scholar 

  12. Zurek, W. H. Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (October, 1991).

    Article  Google Scholar 

  13. Paz, J. P. & Zurek, W. H. in Environment-Induced Decoherence and the Transition from Quantum to Classical (eds Kaiser, R., Westbrook, C. & David, F.) Course 8, 533–614 (Les Houches Lectures Session LXXII: Coherent Atomic Matter Waves, Springer, 2001).

    Google Scholar 

  14. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  15. Joos, E. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2003).

    Book  Google Scholar 

  16. Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition (Springer, 2008).

    MATH  Google Scholar 

  17. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  18. Zurek, W. H. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  19. Zurek, W. H. Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  20. Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton Univ. Press, 1983).

    Book  Google Scholar 

  21. Friedenauer, A., Schmitz, H., Glueckert, J. T., Porras, D. & Schaetz, T. Simulating a quantum magnet with trapped ions. Nature Phys. 4, 757–761 (2008).

    Article  ADS  Google Scholar 

  22. Kim, K. et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010).

    Article  ADS  Google Scholar 

  23. Schneider, C., Enderlein, M., Huber, T. & Schaetz, T. Optical trapping of an ion. Nature Photon. 4, 772–775 (2010).

    Article  ADS  Google Scholar 

  24. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    Article  ADS  Google Scholar 

  25. Lin, G. D., Monroe, C. & Duan, L. M. Sharp phase transitions in a small frustrated network of trapped ion spins. Phys. Rev. Lett. 106, 230402 (2011).

    Article  ADS  Google Scholar 

  26. Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by the US Department of Energy through the LANL/LDRD Program (W.H.Z. and M.Z.) and by the Polish Government research project N202 124736 (J.D.).

Author information

Authors and Affiliations

Authors

Contributions

J.D. suggested and developed the double-slit test for topological defects. W.H.Z. proposed the project and obtained basic estimates for decoherence rates for superpositions of defects. M.Z. developed a detailed theory of decoherence of kink superpositions in the quantum Ising model.

Corresponding author

Correspondence to Wojciech H. Zurek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 316 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziarmaga, J., Zurek, W. & Zwolak, M. Non-local quantum superpositions of topological defects. Nature Phys 8, 49–53 (2012). https://doi.org/10.1038/nphys2156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing