Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protecting entanglement from decoherence using weak measurement and quantum measurement reversal

Abstract

Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence1. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death2,3. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing4, quantum cryptography5, quantum teleportation6,7,8 and quantum metrology9. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for protecting entanglement from decoherence using weak measurement and quantum measurement reversal.
Figure 2: Theoretical estimation of concurrence change as functions of decoherence and weak measurement.
Figure 3: Schematic of the experiment.
Figure 4: Experimental data for protecting entanglement from decoherence using weak measurement and quantum measurement reversal.
Figure 5: The success probability as a function of weak measurement strength.

Similar content being viewed by others

References

  1. Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  2. Yu, T. & Eberly, J. H. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004).

    Article  ADS  Google Scholar 

  3. Almeida, M. P. et al. Environment-induced sudden death of entanglement. Science 316, 579–582 (2007).

    Article  ADS  Google Scholar 

  4. Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  5. Masanes, L., Pironio, S. & Acin, A. Secure device-independent quantum key distribution with causally independent measurement devices. Nature Commun. 2, 238 (2011).

    Article  ADS  Google Scholar 

  6. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  8. Kim, Y-H., Kulik, S. P. & Shih, Y. H. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).

    Article  ADS  Google Scholar 

  9. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  10. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996).

    Article  ADS  Google Scholar 

  11. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  12. Pan, J-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

  13. Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001).

    Article  ADS  Google Scholar 

  14. Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).

    Article  ADS  Google Scholar 

  15. Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  16. Lidar, D. A., Chuang, I. & Whaley, K. B. Decoherence free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    Article  ADS  Google Scholar 

  17. Kwiat, P. G., Berglund, A. J., Alterpeter, J. B. & White, A. G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

    Article  ADS  Google Scholar 

  18. Facchi, P., Lidar, D. A. & Pascazio, S. Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004).

    Article  ADS  Google Scholar 

  19. Maniscalco, S., Francica, F., Zaffino, R. L., Lo Gullo, N. & Plastina, F. Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  20. Williams, N. S. & Jordan, A. N. Entanglement genesis under continuous parity measurement. Phys. Rev. A 78, 062322 (2008).

    Article  ADS  Google Scholar 

  21. Koashi, M. & Ueda, M. Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999).

    Article  ADS  Google Scholar 

  22. Korotkov, A. N. & Jordan, A. N. Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006).

    Article  ADS  Google Scholar 

  23. Katz, N. et al. Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008).

    Article  ADS  Google Scholar 

  24. Kim, Y-S., Cho, Y-W., Ra, Y-S. & Kim, Y-H. Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009).

    Article  ADS  Google Scholar 

  25. Korotkov, A. N. & Keane, K. Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010).

    Article  ADS  Google Scholar 

  26. Lee, J-C., Jeong, Y-C., Kim, Y-S. & Kim, Y-H. Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011).

    Article  ADS  Google Scholar 

  27. Wootters, W. K. Entanglement of formation of an arbitrary state of two-qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  Google Scholar 

  28. Shih, Y. H. & Alley, C. O. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (2009-0070668 and 2011-0021452).

Author information

Authors and Affiliations

Authors

Contributions

Y-S.K. and J-C.L. carried out the theoretical calculations, designed and carried out the experiment, analysed data and drafted the manuscript. O.K. carried out the experiment. Y-H.K. conceived the idea, designed the experiment, analysed data, wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Yoon-Ho Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YS., Lee, JC., Kwon, O. et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys 8, 117–120 (2012). https://doi.org/10.1038/nphys2178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing