Abstract
Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence1. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death2,3. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing4, quantum cryptography5, quantum teleportation6,7,8 and quantum metrology9. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003).
Yu, T. & Eberly, J. H. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004).
Almeida, M. P. et al. Environment-induced sudden death of entanglement. Science 316, 579–582 (2007).
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Masanes, L., Pironio, S. & Acin, A. Secure device-independent quantum key distribution with causally independent measurement devices. Nature Commun. 2, 238 (2011).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Kim, Y-H., Kulik, S. P. & Shih, Y. H. Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86, 1370–1373 (2001).
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).
Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996).
Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).
Pan, J-W., Gasparoni, S., Ursin, R., Weihs, G. & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).
Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001).
Dong, R. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys. 4, 919–923 (2008).
Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).
Lidar, D. A., Chuang, I. & Whaley, K. B. Decoherence free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).
Kwiat, P. G., Berglund, A. J., Alterpeter, J. B. & White, A. G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).
Facchi, P., Lidar, D. A. & Pascazio, S. Unification of dynamical decoupling and the quantum Zeno effect. Phys. Rev. A 69, 032314 (2004).
Maniscalco, S., Francica, F., Zaffino, R. L., Lo Gullo, N. & Plastina, F. Protecting entanglement via the quantum Zeno effect. Phys. Rev. Lett. 100, 090503 (2008).
Williams, N. S. & Jordan, A. N. Entanglement genesis under continuous parity measurement. Phys. Rev. A 78, 062322 (2008).
Koashi, M. & Ueda, M. Reversing measurement and probabilistic quantum error correction. Phys. Rev. Lett. 82, 2598–2601 (1999).
Korotkov, A. N. & Jordan, A. N. Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006).
Katz, N. et al. Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008).
Kim, Y-S., Cho, Y-W., Ra, Y-S. & Kim, Y-H. Reversing the weak quantum measurement for a photonic qubit. Opt. Express 17, 11978–11985 (2009).
Korotkov, A. N. & Keane, K. Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010).
Lee, J-C., Jeong, Y-C., Kim, Y-S. & Kim, Y-H. Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309–16316 (2011).
Wootters, W. K. Entanglement of formation of an arbitrary state of two-qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).
Shih, Y. H. & Alley, C. O. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).
Acknowledgements
This work was supported by the National Research Foundation of Korea (2009-0070668 and 2011-0021452).
Author information
Authors and Affiliations
Contributions
Y-S.K. and J-C.L. carried out the theoretical calculations, designed and carried out the experiment, analysed data and drafted the manuscript. O.K. carried out the experiment. Y-H.K. conceived the idea, designed the experiment, analysed data, wrote the manuscript and supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Kim, YS., Lee, JC., Kwon, O. et al. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys 8, 117–120 (2012). https://doi.org/10.1038/nphys2178
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2178
This article is cited by
-
The efficiency of quantum teleportation with three-qubit entangled state in a noisy environment
Scientific Reports (2023)
-
Genuine three qubit Einstein–Podolsky–Rosen steering under decoherence: revealing hidden genuine steerability via pre-processing
Quantum Information Processing (2023)
-
Ancilla-assisted protection of information: application to atom–cavity systems
Quantum Information Processing (2023)
-
Quantum Key Distribution Over Noisy Channels by the Testing State Method
International Journal of Theoretical Physics (2023)
-
Frequency–modulated qubits in a dissipative cavity: entanglement dynamics and protection
Quantum Information Processing (2023)