Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold

Abstract

Hanbury Brown and Twiss correlations—correlations in far-field intensity fluctuations—yield fundamental information on the quantum statistics of light sources, as demonstrated after the discovery of photon bunching1,2,3. Drawing on the analogy between photons and atoms, similar measurements have been performed for matter-wave sources, probing density fluctuations of expanding ultracold Bose gases4,5,6,7,8. Here we use two-point density correlations to study how coherence is gradually established when crossing the Bose–Einstein condensation threshold. Our experiments reveal a persistent multimode character of the emerging matter-wave as seen in the non-trivial spatial shape of the correlation functions for all probed source geometries, from nearly isotropic to quasi-one-dimensional, and for all probed temperatures. The qualitative features of our observations are captured by ideal Bose gas theory9, whereas the quantitative differences illustrate the role of particle interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorescence imaging of density correlations.
Figure 2: Density correlation results.
Figure 3: Density correlation comparison.

Similar content being viewed by others

References

  1. Hanbury Brown, R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    Article  ADS  Google Scholar 

  2. Fano, U. Quantum theory of interference effects in the mixing of light from phase-independent sources. Am. J. Phys. 29, 539–545 (1961).

    Article  ADS  Google Scholar 

  3. Glauber, R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  4. Yasuda, M. & Shimizu, F. Observation of two-atom correlation of an ultracold neon atomic beam. Phys. Rev. Lett. 77, 3090–3093 (1996).

    Article  ADS  Google Scholar 

  5. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    Article  ADS  Google Scholar 

  6. Schellekens, M. et al. Hanbury Brown–Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    Article  ADS  Google Scholar 

  7. Jeltes, T. et al. Comparison of the Hanbury Brown–Twiss effect for bosons and fermions. Nature 445, 402–405 (2007).

    Article  ADS  Google Scholar 

  8. Hodgman, S. S., Dall, R. G., Manning, A. G., Baldwin, K. G. H. & Truscott, A. G. Direct measurement of long-range third-order coherence in Bose–Einstein condensates. Science 331, 1046–1049 (2011).

    Article  ADS  Google Scholar 

  9. Viana Gomes, J. et al. Theory for a Hanbury Brown–Twiss experiment with a ballistically expanding cloud of cold atoms. Phys. Rev. A 74, 053607 (2006).

    Article  ADS  Google Scholar 

  10. Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005).

    Article  ADS  Google Scholar 

  11. Dall, R. G. et al. Observation of atomic speckle and Hanbury Brown–Twiss correlations in guided matter waves. Nature Comm. 2, 291 (2011).

    Article  Google Scholar 

  12. Arecchi, F. T. Measurement of the statistical distribution of Gaussian and laser sources. Phys. Rev. Lett. 15, 912–916 (1965).

    Article  ADS  Google Scholar 

  13. Bloch, I. F., Hänsch, T. W. & Esslinger, T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000).

    Article  ADS  Google Scholar 

  14. Donner, T. et al. Critical behavior of a trapped interacting Bose gas. Science 315, 1556–1558 (2007).

    Article  ADS  Google Scholar 

  15. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Regimes of quantum degeneracy in trapped 1D gases. Phys. Rev. Lett. 85, 3745–3749 (2000).

    Article  ADS  Google Scholar 

  16. Petrov, D. S., Shlyapnikov, G. V. & Walraven, J. T. M. Phase-fluctuating 3D Bose–Einstein condensates in elongated traps. Phys. Rev. Lett. 87, 050404 (2001).

    Article  ADS  Google Scholar 

  17. Imambekov, A. et al. Density ripples in expanding low-dimensional gases as a probe of correlations. Phys. Rev. A 80, 033604 (2009).

    Article  ADS  Google Scholar 

  18. Dettmer, S. et al. Observation of phase fluctuations in elongated Bose–Einstein condensates. Phys. Rev. Lett. 87, 160406 (2001).

    Article  ADS  Google Scholar 

  19. Manz, S. et al. Two-point density correlations of quasicondensates in free expansion. Phys. Rev. A 81, 031610 (2010).

    Article  ADS  Google Scholar 

  20. Bücker, R. et al. Single-particle-sensitive imaging of freely propagating ultracold atoms. New J. Phys. 11, 103039 (2009).

    Article  ADS  Google Scholar 

  21. Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J. & Henkel, C. Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Phys. 48, 263–356 (2002).

    Article  ADS  Google Scholar 

  22. Trinker, M. et al. Multilayer atom chips for versatile atom micromanipulation. Appl. Phys. Lett. 92, 254102 (2008).

    Article  ADS  Google Scholar 

  23. Gerbier, F. Quasi-1D Bose–Einstein condensates in the dimensional crossover regime. Europhys. Lett. 66, 771–777 (2004).

    Article  ADS  Google Scholar 

  24. Mazets, I. E., Schumm, T. & Schmiedmayer, J. Breakdown of integrability in a quasi-1d ultracold bosonic gas. Phys. Rev. Lett. 100, 210403 (2008).

    Article  ADS  Google Scholar 

  25. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    Article  ADS  Google Scholar 

  26. Mazets, I. E. & Schmiedmayer, J. Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J. Phys. 12, 055023 (2010).

    Article  ADS  Google Scholar 

  27. Davis, M. J. & Blair Blakie, P. Critical temperature of a trapped Bose gas: comparison of theory and experiment. Phys. Rev. Lett. 96, 060404 (2006).

    Article  ADS  Google Scholar 

  28. Kheruntsyan, K., Gangardt, D. M., Drummond, P. D. & Shlyapnikov, G. V. Pair correlations in a finite-temperature 1D Bose gas. Phys. Rev. Lett. 91, 040403 (2003).

    Article  ADS  Google Scholar 

  29. Castin, Y. & Dum, R. Bose–Einstein condensates in time dependent traps. Phys. Rev. Lett. 77, 5315–5319 (1996).

    Article  ADS  Google Scholar 

  30. Kagan, Y., Surkov, E. L. & Shlyapnikov, G. V. Evolution of a Bose-condensed gas under variations of the confining potential. Phys. Rev. A 54, R1753–R1756 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Wittgenstein prize, Austrian Science Fund (FWF) projects F40, P21080-N16 and P22590-N16, the European Union projects AQUTE and Marie Curie (FP7 GA no. 236702), the FWF doctoral program CoQuS (W 1210), the EUROQUASAR QuDeGPM Project and the FunMat research alliance. We wish to thank A. Aspect, D. Boiron, A. Gottlieb, I. Mazets, J. Vianna Gomes and C. I. Westbrook for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.P., R.B., S.M. and T.S. collected the data presented in this Letter. A.P. analysed the data and developed the ideal Bose gas model. All authors contributed to the building of the experimental set-up, the conceptual formulation of the physics, the interpretation of the data and writing the manuscript.

Corresponding author

Correspondence to J. Schmiedmayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrin, A., Bücker, R., Manz, S. et al. Hanbury Brown and Twiss correlations across the Bose–Einstein condensation threshold. Nature Phys 8, 195–198 (2012). https://doi.org/10.1038/nphys2212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing