Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Emergent electrodynamics of skyrmions in a chiral magnet

Abstract

When an electron moves in a smoothly varying non-collinear magnetic structure, its spin orientation adapts constantly, thereby inducing forces that act both on the magnetic structure and on the electron. These forces may be described by electric and magnetic fields of an emergent electrodynamics1,2,3,4. The topologically quantized winding number of so-called skyrmions—a type of magnetic whirl discovered recently in chiral magnets5,6,7—has been predicted to induce exactly one quantum of emergent magnetic flux per skyrmion. A moving skyrmion is therefore expected to induce an emergent electric field following Faraday’s law of induction, which inherits this topological quantization8. Here we report Hall-effect measurements that establish quantitatively the predicted emergent electrodynamics. We obtain quantitative evidence for the depinning of skyrmions from impurities (at current densities of only 106 A m−2) and their subsequent motion. The combination of exceptionally small current densities and simple transport measurements offers fundamental insights into the connection between the emergent and real electrodynamics of skyrmions in chiral magnets, and might, in the long term, be important for applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature dependence of the Hall resistivity in the skyrmion lattice phase of MnSi under a large applied d.c. electric current.
Figure 2: Typical variation of the Hall resistivity, ρx y, of MnSi as a function of applied d.c. current at B=250 mT and for selected temperatures.
Figure 3: Main characteristics of the response of the skyrmion lattice phase in MnSi under applied electric currents.

Similar content being viewed by others

References

  1. Volovik, G. Linear momentum in ferromagnets. J. Phys. C 20, L87 (1987).

    Article  Google Scholar 

  2. Yang, S. A. et al. Universal electromotive force induced by domain wall motion. Phys. Rev. Lett. 102, 067201 (2009).

    Article  ADS  Google Scholar 

  3. Hai, P. N., Ohya, S., Tanaka, M., Barnes, S. E. & Maekawa, S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 458, 489–492 (2009).

    Article  ADS  Google Scholar 

  4. Barnes, S. E. & Maekawa, S. Generalization of Faraday’s law to include nonconservative spin forces. Phys. Rev. Lett. 98, 246601 (2007).

    Article  ADS  Google Scholar 

  5. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  ADS  Google Scholar 

  6. Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article  ADS  Google Scholar 

  7. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  ADS  Google Scholar 

  8. Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).

    Article  ADS  Google Scholar 

  9. Adams, T. et al. Long-range crystalline nature of the skyrmion lattice in MnSi. Phys. Rev. Lett. 107, 217206 (2011).

    Article  ADS  Google Scholar 

  10. Münzer, W. et al. Skyrmion lattice in the doped semiconductor Fe1−xCoxSi. Phys. Rev. B (R) 81, 041203 (2010).

    Article  ADS  Google Scholar 

  11. Pfleiderer, C. et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds. J. Phys. Condens. Matter 22, 164207 (2010).

    Article  ADS  Google Scholar 

  12. Bogdanov, A. N. & Yablonskii, D. A. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Sov. Phys. JETP 68, 101–103 (1989).

    Google Scholar 

  13. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  ADS  Google Scholar 

  14. Jonietz, F. et al. Spin transfer torques in MnSi at ultra-low current densities. Science 330, 1648–1651 (2010).

    Article  ADS  Google Scholar 

  15. Grollier, J. et al. Switching a spin valve back and forth by current-induced domain wall motion. Appl. Phys. Lett. 83, 509–511 (2003).

    Article  ADS  Google Scholar 

  16. Tsoi, M., Fontana, R. & Parkin, S. Magnetic domain wall motion triggered by an electric current. Appl. Phys. Lett. 83, 2617–2619 (2003).

    Article  ADS  Google Scholar 

  17. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  ADS  Google Scholar 

  18. Bauer, A. et al. Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth, magnetization, ac susceptibility, and specific heat. Phys. Rev. B 82, 64404 (2010).

    Article  ADS  Google Scholar 

  19. Larkin, A. I. & Ovchinnikov, Y. N. Electrodynamics of inhomogeneous type-II superconductor. Sov. Phys. JETP 38, 854–858 (1974).

    ADS  Google Scholar 

  20. Schmid, A. & Hauger, W. On the theory of vortex motion in an inhomogeneous superconducting film. J. Low Temp. Phys. 11, 667–685 (1973).

    Article  ADS  Google Scholar 

  21. Zhang, S. & Zhang, S. S-L. Generalization of the Landau–Lifshitz–Gilbert equation for conducting ferromagnets. Phys. Rev. Lett. 102, 086601 (2009).

    Article  ADS  Google Scholar 

  22. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  Google Scholar 

  23. Brazovskii, S. & Nattermann, T. Pinning and sliding of driven elastic systems: Domain walls and charge density waves. Adv. Phys. 53, 177–253 (2004).

    Article  ADS  Google Scholar 

  24. Kopnin, N. Vortex dynamics and mutual friction in superconductors and Fermi superfluids. Rep. Prog. Phys. 65, 1633–1678 (2002).

    Article  ADS  Google Scholar 

  25. Neubauer, A. et al. Ultra-high vacuum compatible image furnace. Rev. Sci. Instrum. 82, 013902 (2010).

    Article  ADS  Google Scholar 

  26. Welter, B. Tunnelspektroskopie an Korngrenzenkontakten aus elektronendotierten Hochtemperatur–Supraleitern. PhD thesis, Technische Univ. München (2007).

Download references

Acknowledgements

We wish to thank P. Böni, H. Hagn, N. Nagaosa, T. Nattermann, S. Mayr, M. Opel, B. Russ, B. Spivak, G. Stölzl and V. M. Vinokur for helpful discussions and support. R.R., A.B., M.W. and C.F. acknowledge financial support through the TUM Graduate School. K.E. acknowledges financial support through the Deutsche Telekom Stiftung and the Bonn Cologne Graduate School. Financial support through Deutsche Forschungsgemeinschaft TRR80, SFB608 and FOR960 is gratefully acknowledged.

Author information

Authors and Affiliations

Contributions

T.S., R.R. M.H., M.W. and C.P. developed the experimental set-up; T.S. and R.R. performed the experiments; T.S., R.R. and C.P. analysed the experimental data; C.F. wrote the software for analysing the data; A.B. grew the single-crystal samples and characterized them; K.E., M.G. and A.R. developed the theoretical interpretation; C.P. supervised the experimental work; C.P. and A.R. proposed this study and wrote the manuscript; all authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to C. Pfleiderer or A. Rosch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, T., Ritz, R., Bauer, A. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nature Phys 8, 301–304 (2012). https://doi.org/10.1038/nphys2231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2231

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing