Abstract
The standard quantum limit of measurement uncertainty can be surpassed using squeezed states, which minimize the uncertainty product in Heisenberg’s relation by reducing the uncertainty of one property at the expense of another1. Collisions in ultracold atomic gases have been used to induce quadrature spin squeezing in two-component Bose condensates 2,3, for which the complementary properties are the components of the total spin vector. Here, we generalize this finding to a higher-dimensional spin space by measuring squeezing in a spin-1 Bose condensate. Following a quench through a quantum phase transition, we demonstrate that spin-nematic quadrature squeezing improves on the standard quantum limit by up to 8–10 dB—a significant increase on previous measurements. This squeezing is associated with negligible occupation of the squeezed modes, and is analogous to optical two-mode vacuum squeezing. The observation has implications for continuous variable quantum information and quantum-enhanced magnetometry.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).
Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).
Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).
Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).
Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).
Ho, T-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).
Ohmi, T. & Machida, K. Bose–Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998).
Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1999).
Chang, M-S. et al. Observation of spinor dynamics in optically trapped 87Rb Bose–Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004).
Schmaljohann, H. et al. Dynamics of f=2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).
Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).
Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).
Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).
Pu, H. & Meystre, P. Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000).
Duan, L-M., Sørensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000).
Duan, L-M., Cirac, J. I. & Zoller, P. Quantum entanglement in spinor Bose–Einstein condensates. Phys. Rev. A 65, 033619 (2002).
Mias, G. I., Cooper, N. R. & Girvin, S. M. Quantum noise, scaling, and domain formation in a spinor Bose–Einstein condensate. Phys. Rev. A 77, 023616 (2008).
Müstecaplıoğlu, O. E., Zhang, M. & You, L. Spin squeezing and entanglement in spinor condensates. Phys. Rev. A 66, 033611 (2002).
Sau, J. D., Leslie, S. R., Cohen, M. L. & Stamper-Kurn, D. M. Spin squeezing of high-spin, spatially extended quantum fields. New J. Phys. 12, 085011 (2010).
Vitagliano, G., Hyllus, P., Egusquiza, I. L. & Tóth, G. Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011).
Liu, Y. et al. Number fluctuations and energy dissipation in sodium spinor condensates. Phys. Rev. Lett. 102, 225301 (2009).
Leslie, S. R. et al. Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A 79, 043631 (2009).
Klempt, C. et al. Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010).
Bookjans, E. M., Hamley, C. D. & Chapman, M. S. Strong quantum spin correlations observed in atomic spin mixing. Phys. Rev. Lett. 107, 210406 (2011).
Chang, M-S., Qin, Q., Zhang, W. & Chapman, M. S. Coherent spinor dynamics in a spin-1 Bose condensate. Nature Phys. 1, 111–116 (2005).
Kronjäger, J. et al. Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals. Phys. Rev. A 72, 063619 (2005).
Zhang, W., Zhou, D. L., Chang, M-S., Chapman, M. S. & You, L. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A 72, 013602 (2005).
Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).
Gross, C. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011).
Acknowledgements
We would like to thank D. M. Stamper-Kurn for bringing ref. 21 to our attention and for suggesting these investigations. We would like to thank T. A. B. Kennedy, C. A. R. Sá de Melo and J. L. Wood for discussions and A. Zangwill for suggestions about the manuscript.
Author information
Authors and Affiliations
Contributions
C.D.H. and M.S.C. jointly conceived the study. C.D.H., C.S.G. and T.M.H. carried out the experiment and analysed the data. E.M.B. developed the imaging system. C.D.H. developed essential theory and carried out the simulations. M.S.C. supervised the work.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 808 kb)
Rights and permissions
About this article
Cite this article
Hamley, C., Gerving, C., Hoang, T. et al. Spin-nematic squeezed vacuum in a quantum gas. Nature Phys 8, 305–308 (2012). https://doi.org/10.1038/nphys2245
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys2245
This article is cited by
-
Cavity-enhanced metrology in an atomic spin-1 Bose–Einstein condensate
Frontiers of Physics (2024)
-
Quantum-enhanced sensing by echoing spin-nematic squeezing in atomic Bose–Einstein condensate
Nature Physics (2023)
-
Time-reversal-based quantum metrology with many-body entangled states
Nature Physics (2022)
-
Nonlinear interferometry beyond classical limit enabled by cyclic dynamics
Nature Physics (2022)
-
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity
Nature (2022)