Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin-nematic squeezed vacuum in a quantum gas

Abstract

The standard quantum limit of measurement uncertainty can be surpassed using squeezed states, which minimize the uncertainty product in Heisenberg’s relation by reducing the uncertainty of one property at the expense of another1. Collisions in ultracold atomic gases have been used to induce quadrature spin squeezing in two-component Bose condensates 2,3, for which the complementary properties are the components of the total spin vector. Here, we generalize this finding to a higher-dimensional spin space by measuring squeezing in a spin-1 Bose condensate. Following a quench through a quantum phase transition, we demonstrate that spin-nematic quadrature squeezing improves on the standard quantum limit by up to 8–10 dB—a significant increase on previous measurements. This squeezing is associated with negligible occupation of the squeezed modes, and is analogous to optical two-mode vacuum squeezing. The observation has implications for continuous variable quantum information and quantum-enhanced magnetometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the experimental sequence using semi-classical simulation and quasi-probability distributions.
Figure 2: Comparison of measured quadrature fluctuations with a fully quantum calculation.
Figure 3: Reconstructions of the phase space for different evolution times.

Similar content being viewed by others

References

  1. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    Article  ADS  Google Scholar 

  2. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    Article  ADS  Google Scholar 

  3. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    Article  ADS  Google Scholar 

  4. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  5. Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    Article  ADS  Google Scholar 

  6. Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010).

    Article  ADS  Google Scholar 

  7. Ho, T-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998).

    Article  ADS  Google Scholar 

  8. Ohmi, T. & Machida, K. Bose–Einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn 67, 1822–1825 (1998).

    Article  ADS  Google Scholar 

  9. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1999).

    Article  ADS  Google Scholar 

  10. Chang, M-S. et al. Observation of spinor dynamics in optically trapped 87Rb Bose–Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004).

    Article  ADS  Google Scholar 

  11. Schmaljohann, H. et al. Dynamics of f=2 spinor Bose–Einstein condensates. Phys. Rev. Lett. 92, 040402 (2004).

    Article  ADS  Google Scholar 

  12. Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).

    Article  ADS  Google Scholar 

  13. Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    Article  ADS  Google Scholar 

  14. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article  ADS  Google Scholar 

  15. Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994).

    Article  ADS  Google Scholar 

  16. Pu, H. & Meystre, P. Creating macroscopic atomic Einstein–Podolsky–Rosen states from Bose–Einstein condensates. Phys. Rev. Lett. 85, 3987–3990 (2000).

    Article  ADS  Google Scholar 

  17. Duan, L-M., Sørensen, A., Cirac, J. I. & Zoller, P. Squeezing and entanglement of atomic beams. Phys. Rev. Lett. 85, 3991–3994 (2000).

    Article  ADS  Google Scholar 

  18. Duan, L-M., Cirac, J. I. & Zoller, P. Quantum entanglement in spinor Bose–Einstein condensates. Phys. Rev. A 65, 033619 (2002).

    Article  ADS  Google Scholar 

  19. Mias, G. I., Cooper, N. R. & Girvin, S. M. Quantum noise, scaling, and domain formation in a spinor Bose–Einstein condensate. Phys. Rev. A 77, 023616 (2008).

    Article  ADS  Google Scholar 

  20. Müstecaplıoğlu, O. E., Zhang, M. & You, L. Spin squeezing and entanglement in spinor condensates. Phys. Rev. A 66, 033611 (2002).

    Article  ADS  Google Scholar 

  21. Sau, J. D., Leslie, S. R., Cohen, M. L. & Stamper-Kurn, D. M. Spin squeezing of high-spin, spatially extended quantum fields. New J. Phys. 12, 085011 (2010).

    Article  ADS  Google Scholar 

  22. Vitagliano, G., Hyllus, P., Egusquiza, I. L. & Tóth, G. Spin squeezing inequalities for arbitrary spin. Phys. Rev. Lett. 107, 240502 (2011).

    Article  ADS  Google Scholar 

  23. Liu, Y. et al. Number fluctuations and energy dissipation in sodium spinor condensates. Phys. Rev. Lett. 102, 225301 (2009).

    Article  ADS  Google Scholar 

  24. Leslie, S. R. et al. Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A 79, 043631 (2009).

    Article  ADS  Google Scholar 

  25. Klempt, C. et al. Parametric amplification of vacuum fluctuations in a spinor condensate. Phys. Rev. Lett. 104, 195303 (2010).

    Article  ADS  Google Scholar 

  26. Bookjans, E. M., Hamley, C. D. & Chapman, M. S. Strong quantum spin correlations observed in atomic spin mixing. Phys. Rev. Lett. 107, 210406 (2011).

    Article  ADS  Google Scholar 

  27. Chang, M-S., Qin, Q., Zhang, W. & Chapman, M. S. Coherent spinor dynamics in a spin-1 Bose condensate. Nature Phys. 1, 111–116 (2005).

    Article  ADS  Google Scholar 

  28. Kronjäger, J. et al. Evolution of a spinor condensate: Coherent dynamics, dephasing, and revivals. Phys. Rev. A 72, 063619 (2005).

    Article  ADS  Google Scholar 

  29. Zhang, W., Zhou, D. L., Chang, M-S., Chapman, M. S. & You, L. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A 72, 013602 (2005).

    Article  ADS  Google Scholar 

  30. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    Article  ADS  Google Scholar 

  31. Gross, C. et al. Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature 480, 219–223 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. M. Stamper-Kurn for bringing ref. 21 to our attention and for suggesting these investigations. We would like to thank T. A. B. Kennedy, C. A. R. Sá de Melo and J. L. Wood for discussions and A. Zangwill for suggestions about the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.D.H. and M.S.C. jointly conceived the study. C.D.H., C.S.G. and T.M.H. carried out the experiment and analysed the data. E.M.B. developed the imaging system. C.D.H. developed essential theory and carried out the simulations. M.S.C. supervised the work.

Corresponding author

Correspondence to M. S. Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 808 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamley, C., Gerving, C., Hoang, T. et al. Spin-nematic squeezed vacuum in a quantum gas. Nature Phys 8, 305–308 (2012). https://doi.org/10.1038/nphys2245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2245

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing