Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2

Abstract

The superconducting-gap distribution is a pivotal characteristic for a superconductor. Whereas the cuprates and conventional phonon-mediated superconductors are characterized by distinct d-wave and s-wave pairing symmetries with nodal and nodeless gap distributions respectively, the superconducting-gap distributions in iron-based superconductors are rather diversified. Whereas nodeless gap distributions have been directly observed in Ba1−xKxFe2As2, BaFe2−xCoxAs2, KxFe2−ySe2 and FeTe1−xSex (refs 1, 2, 3, 4), the signatures of nodal superconducting gaps have been reported in LaOFeP, LiFeP, KFe2As2, BaFe2(As1−xPx)2, BaFe2−xRuxAs2 and FeSe (refs 5, 6, 7, 8, 9, 10, 11, 12). We here report the angle-resolved photoemission spectroscopy measurements on the superconducting-gap structure of BaFe2(As0.7P0.3)2, and in particular the direct observation of a circular line node on the largest hole Fermi surface around the Z point at the Brillouin zone boundary. Our findings rule out a d-wave-pairing origin for the nodal gap, and establish the existence of nodes in iron pnictides under the s-wave pairing symmetry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The temperature dependence of the photoemission data of BaFe2(As0.7P0.3)2.
Figure 2: The superconducting-gap distribution on the electron FSs of BaFe2(As0.7P0.3)2.
Figure 3: The superconducting-gap distribution on the hole FSs of BaFe2(As0.7P0.3)2.
Figure 4: Momentum dependence of the superconducting gap.

Similar content being viewed by others

References

  1. Ding, H. et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2 . Europhys. Lett. 83, 47001 (2008).

    Article  ADS  Google Scholar 

  2. Terashima, K. et al. Fermi surface nesting induced strong pairing in iron-based superconductors. Proc. Natl Acad. Sci. USA 106, 7330–7333 (2009).

    Article  ADS  Google Scholar 

  3. Zhang, Y. et al. Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy. Nature Mater. 10, 273–277 (2011).

    Article  ADS  Google Scholar 

  4. Miao, H. et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45. Preprint at http://arxiv.org/abs/1107.0985 (2011).

  5. Fletcher, J. D. et al. Evidence for a nodal-line superconducting state in LaFePO. Phys. Rev. Lett. 102, 147001 (2009).

    Article  ADS  Google Scholar 

  6. Hashimoto, K. et al. Line nodes in the energy gap of superconducting BaFe2(As1−xPx)2 single crystals as seen via penetration depth and thermal conductivity. Phys. Rev. B 81, 220501 (2010).

    Article  ADS  Google Scholar 

  7. Yamashita, M. et al. Nodal gap structure of superconducting BaFe2(As1−xPx)2 from angle-resolved thermal conductivity in a magnetic field. Phys. Rev. B 84, 060507 (2011).

    Article  ADS  Google Scholar 

  8. Nakai, Y. et al. 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2 . Phys. Rev. B 81, 020503 (2010).

    Article  ADS  Google Scholar 

  9. Hashimoto, K. et al. Nodeless vs nodal order parameters in LiFeAs and LiFeP superconductors. Preprint at http://arxiv.org/abs/1107.4505 (2011).

  10. Dong, J. K. et al. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2 . Phys. Rev. Lett. 104, 087005 (2010).

    Article  ADS  Google Scholar 

  11. Qiu, X. et al. Nodal superconductivity in Ba(Fe1−xRux)2As2 induced by isovalent Ru substitution. Preprint at http://arxiv.org/abs/1106.5417 (2011).

  12. Song, C. L. et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science 332, 1410–1413 (2010).

    Article  ADS  Google Scholar 

  13. Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1−xFx . Phys. Rev. Lett. 101, 057003 (2008).

    Article  ADS  Google Scholar 

  14. Kuroki, K. et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx . Phys. Rev. Lett. 101, 087004 (2008).

    Article  ADS  Google Scholar 

  15. Seo, K., Bernevig, A. B. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    Article  ADS  Google Scholar 

  16. Hu, J. P. & Ding, H. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors. Preprint at http://arxiv.org/abs/1107.1334 (2011).

  17. Chen, C. T., Tsuei, C. C., Ketchen, M. B., Ren, Z. A. & Zhao, Z. X. Integer and half-integer flux-quantum transitions in a niobium-iron pnictide loop. Nature Phys. 6, 260–264 (2010).

    Article  ADS  Google Scholar 

  18. Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article  ADS  Google Scholar 

  19. Kuroki, K., Usui, H., Onari, S., Arita, R. & Aoki, H. Pnictogen height as a possible switch between high- T c nodeless and low- T c nodal pairings in the iron-based superconductors. Phys. Rev. B 79, 224511 (2009).

    Article  ADS  Google Scholar 

  20. Wang, F., Zhai, H. & Lee, D-H. Nodes in the gap function of LaFePO, the gap function of the Fe(Se,Te) systems, and the STM signature of the s± pairing. Phys. Rev. B 81, 184512 (2010).

    Article  ADS  Google Scholar 

  21. Thomale, R., Platt, C., Hanke, W. & Bernevig, B. A. Why some iron-based superconductors are nodal while others are nodeless. Phys. Rev. Lett. 106, 187003 (2011).

    Article  ADS  Google Scholar 

  22. Laad, M. S. & Craco, L. Theory of multiband superconductivity in iron pnictides. Phys. Rev. Lett. 103, 017002 (2009).

    Article  ADS  Google Scholar 

  23. Wang, F., Zhai, H. & Lee, D-H. Nodes in the gap function of LaFePO, the gap function of the Fe(Se,Te) systems, and the STM signature of the s± pairing. Phys. Rev. B 81, 184512 (2010).

    Article  ADS  Google Scholar 

  24. Suzuki, K., Usui, H. & Kuroki, K. Possible three dimensional nodes in the s± superconducting gap of BaFe2(As1−xPx)2 . J. Phys. Soc. Jpn 80, 013710 (2011).

    Article  ADS  Google Scholar 

  25. Su, Y., Setty, C., Wang, Z. & Hu, J. Inter-layer superconducting pairing induced c-axis nodal lines in iron-based superconductors. Preprint at http://arxiv.org/abs/1110.0695 (2011).

  26. Ye, Z. R. et al. Phosphor induced significant hole-doping in ferropnictide superconductor BaFe2(As1−xPx)2. Preprint athttp://arxiv.org/abs/1105.5242 (2011).

  27. Yoshida, T. et al. Two-dimensional and three-dimensional Fermi surfaces of superconducting BaFe2(As1−xPx)2 and their nesting properties revealed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 106, 117001 (2011).

    Article  ADS  Google Scholar 

  28. Shimojima, T. et al. Orbital-independent superconducting gaps in iron-pnictides. Science 332, 564–567 (2011).

    Article  ADS  Google Scholar 

  29. Zhang, Y. et al. Out-of-plane momentum and symmetry-dependent energy gap of the pnictide Ba0.6K0.4Fe2As2 superconductor revealed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 105, 117003 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J. P. Hu and X. H. Chen for discussions, and thank D. H. Lu for the experimental assistance at SSRL. This work is supported in part by the National Science Foundation of China, Ministry of Education of China, Shanghai Municipal Science and Technology Committee and the National Basic Research Program of China (973 Program) under grant Nos 2012CB921400, 2011CB921802 and 2011CBA00112. SSRL is operated by the US Department of Energy, Office of Basic Energy Science, Divisions of Chemical Sciences and Material Sciences.

Author information

Authors and Affiliations

Contributions

Y.Z., Q.Q.G., Z.R.Y., F.C., M.X. and B.P.X. made ARPES measurements. Z.R.Y. and J.J. conducted sample characterization measurements. Z.R.Y. and Y.Z. grew the samples and analysed the ARPES data. D.L.F. and Y.Z. wrote the paper. D.L.F. is responsible for the infrastructure, project direction and planning.

Corresponding author

Correspondence to D. L. Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Ye, Z., Ge, Q. et al. Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(As0.7P0.3)2. Nature Phys 8, 371–375 (2012). https://doi.org/10.1038/nphys2248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing