Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/half-metallic ferromagnet junctions

Abstract

Conventional superconductivity is incompatible with ferromagnetism, because the magnetic exchange field tends to spin-polarize electrons and breaks apart the opposite-spin singlet Cooper pairs1. Yet, the possibility of a long-range penetration of superconducting correlations into strong ferromagnets has been evinced by experiments that found Josephson coupling between superconducting electrodes separated afar by a ferromagnetic spacer2,3,4,5,6,7. This is considered a proof of the emergence at the superconductor/ferromagnetic (S/F) interfaces of equal-spin triplet pairing, which is immune to the exchange field and can therefore propagate over long distances into the F (ref. 8). This effect bears much fundamental interest and potential for spintronic applications9. However, a spectroscopic signature of the underlying microscopic mechanisms has remained elusive. Here we do show this type of evidence, notably in a S/F system for which the possible appearance of equal-spin triplet pairing is controversial10,11,12: heterostructures that combine a half-metallic F (La0.7Ca0.3MnO3) with a d-wave S (YBa2Cu3O7). We found quasiparticle and electron interference effects in the conductance across the S/F interfaces that directly demonstrate the long-range propagation across La0.7Ca0.3MnO3 of superconducting correlations, and imply the occurrence of unconventional equal-spin Andreev reflection. This allows for an understanding of the unusual proximity behaviour observed in this type of heterostructures12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Propagation of the superconducting correlations.
Figure 2: Junction architecture and differential conductance.
Figure 3: Tomasch and McMillan–Rowell resonances.
Figure 4: Analysis of the conductance patterns.

Similar content being viewed by others

References

  1. Buzdin, A. I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  2. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  ADS  Google Scholar 

  3. Anwar, M. S., Czeschka, F., Hesselberth, M., Porcu, M. & Aarts, J. Long-range supercurrents through half-metallic ferromagnetic CrO2 . Phys. Rev. B 82, 100501 (2010).

    Article  ADS  Google Scholar 

  4. Khaire, T. S. et al. Observation of spin-triplet superconductivity in co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article  ADS  Google Scholar 

  5. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    Article  ADS  Google Scholar 

  6. Sprungmann, D., Westerholt, K., Zabel, H., Weides, M. & Kohlstedt, H. Evidence for triplet superconductivity in Josephson junctions with barriers of the ferromagnetic Heusler alloy Cu2MnAl. Phys. Rev. B 82, 060505 (2010).

    Article  ADS  Google Scholar 

  7. Senapati, K., Blamire, M. G. & Barber, Z. H. Spin-filter Josephson junctions. Nature Mater. 10, 849–852 (2011).

    Article  ADS  Google Scholar 

  8. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005).

    Article  ADS  Google Scholar 

  9. Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–49 (January 2011).

    Article  ADS  Google Scholar 

  10. Dybko, K. et al. Possible spin-triplet superconducting phase in the La0.7Sr0.3MnO3/YBa2Cu3O7/La0.7Sr0.3MnO3 trilayer. Phys. Rev. B 80, 144504 (2009).

    Article  ADS  Google Scholar 

  11. Fridman, I., Gunawan, L., Botton, G. A. & Wei, J. Y. T. Scanning tunneling spectroscopy study of c-axis proximity effect in epitaxial bilayer manganite/cuprate thin films. Phys. Rev. B 84, 104522 (2011).

    Article  ADS  Google Scholar 

  12. Kalcheim, Y., Kirzhner, T., Koren, G. & Millo, O. Long-range proximity effect in La2/3Ca1/3MnO3/(100)YBa2Cu3O7−δ ferromagnet/superconductor bilayers: Evidence for induced triplet superconductivity in the ferromagnet. Phys. Rev. B 83, 064510 (2011).

    Article  ADS  Google Scholar 

  13. Sefrioui, Z. et al. Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 67, 214511 (2003).

    Article  ADS  Google Scholar 

  14. Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regime in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article  ADS  Google Scholar 

  15. Klapwijk, T. M. Proximity effect from an Andreev perspective. J. Supercond. Novel Magn. 17, 593–611 (2004).

    Article  ADS  Google Scholar 

  16. Cirillo, C. et al. Superconducting proximity effect and interface transparency in Nb/PdNi bilayers. Phys. Rev. B 72, 144511 (2005).

    Article  ADS  Google Scholar 

  17. Coey, J. M. D., Viret, M. & von Molnár, S. Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999).

    Article  ADS  Google Scholar 

  18. Eschrig, M. & Löfwander, T. Triplet supercurrents in clean and disordered half-metallic ferromagnets. Nature Phys. 4, 138–143 (2008).

    Article  ADS  Google Scholar 

  19. Linder, J., Cuoco, M. & Sudbø, A. Spin-active interfaces and unconventional pairing in half-metal/superconductor junctions. Phys. Rev. B 81, 174526 (2010).

    Article  ADS  Google Scholar 

  20. Van Zalk, M., Brinkman, A., Aarts, J. & Hilgenkamp, H. Interface resistance of YBa2Cu3O7−δ/La0.67Sr0.33MnO3 ramp-type contacts. Phys. Rev. B 82, 134513 (2010).

    Article  ADS  Google Scholar 

  21. Tomasch, W. J. Geometrical resonances and boundary effects in tunneling from superconducting. Phys. Rev. Lett. 16, 16–19 (1966).

    Article  ADS  Google Scholar 

  22. McMillan, W. L. & Anderson, P. W. Theory of geometrical resonances in the tunneling characteristics of thick films of superconductors. Phys. Rev. Lett. 16, 85–87 (1966).

    Article  ADS  Google Scholar 

  23. Rowell, J. M. & McMillan, W. L. Electron interference in a normal metal induced by superconducting contacts. Phys. Rev. Lett. 16, 453–456 (1966).

    Article  ADS  Google Scholar 

  24. Rowell, J. M. Tunneling observation of bound states in a normal metal-superconductor sandwich. Phys. Rev. Lett. 30, 167–170 (1973).

    Article  ADS  Google Scholar 

  25. Koren, G., Polturak, E. & Deutscher, G. Oxygen-controlled transition from tunnel-like to a weak-link behavior in YBa2Cu3O7−d/YBa2CoCu2Oy/YBa2Cu3O7−δ wedge-edge junctions. Physica C 259, 379–384 (1996).

    Article  ADS  Google Scholar 

  26. Nesher, O. & Koren, G. Observation of Tomasch oscillations and tunneling-like behavior in oxygen-deficient edge junctions. App. Phys. Lett. 74, 3392–3394 (1999).

    Article  ADS  Google Scholar 

  27. Nesher, O. & Koren, G. Measurements of Δ and vF from Andreev reflections and McMillan-Rowell oscillations in edge junctions of YBa2Cu3O6.6/YBa2Cu2.55Fe0.45Oy/YBa2Cu3O6.6 . Phys. Rev. B 60, 9287–9290 (1999).

    Article  ADS  Google Scholar 

  28. Singh, D. J. & Pickett, W. Pseudogaps, Jahn-Teller distortions, and magnetic order in manganite perovskites. Phys. Rev. B 57, 88–91 (1998).

    Article  ADS  Google Scholar 

  29. Hass, N. et al. Sharp gap edge and determination of the Fermi velocity in Y1Ba2Cu3O7−δ by point contact spectroscopy. J. Supercond. 5, 191–194 (1992).

    Article  ADS  Google Scholar 

  30. Hoffmann, A. et al. Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 72, 140407 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.E.V. and C.V. wish to thank J. M. Rowell, A. Goldman and S. Maekawa for fruitful discussions. We thank C. Deranlot for Au deposition, D. Deneuve for technical support for the lithography process and C. Collet for focused ion beam and scanning electron micrographs. This work was supported by French ANR grant ‘SUPERHYBRIDS-II’ and RTRA grant ‘Supraspin’, European Community’s FP7/2010 ‘Pixie’, Spanish MICINN Grants MAT 2011 27470, CSD2009-00013 (IMAGINE) and CAM S2009-MAT 1756 (PHAMA).

Author information

Authors and Affiliations

Authors

Contributions

J.E.V., J.S. and A.B. conceived the experiments. C.V. and J.T. grew the samples.C.V. performed the lithography processes. C.V., J.E.V. and Z.S. carried out transport experiments. C.V. analysed the data. C.V. and J.E.V. wrote the paper. All of the authors contributed to the discussion leading to the understanding of the data and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Javier E. Villegas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visani, C., Sefrioui, Z., Tornos, J. et al. Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/half-metallic ferromagnet junctions. Nature Phys 8, 539–543 (2012). https://doi.org/10.1038/nphys2318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing