Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits

Abstract

Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum-dot circuits1,2,3,4. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased quantum point contact1,5,6 (QPC). It is critical to understand the back-action disturbances resulting from such a measurement approach7,8. Previous studies have indicated that QPC detectors emit phonons which are then absorbed by nearby qubits9,10,11,12,13. We report here the observation of a pronounced back-action effect in multiple dot circuits, where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the QPC and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interference in quantum dot–phonon interactions.
Figure 2: Interference in back-action in a DQD.
Figure 3: Interference in back-action in a TQD.
Figure 4: Theoretical results.

Similar content being viewed by others

References

  1. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  2. Fujisawa, T., Hayashi, T. & Sasaki, S. Time-dependent single-electron transport through quantum dots. Rep. Prog. Phys. 69, 759–796 (2006).

    Article  ADS  Google Scholar 

  3. Petersson, K. D., Petta, J. R., Lu, H. & Gossard, A. C. Quantum coherence in a one-electron semiconductor charge qubit. Phys. Rev. Lett. 105, 246804 (2010).

    Article  ADS  Google Scholar 

  4. Gaudreau, L. et al. Coherent control of three-spin states in a triple quantum dot. Nature Phys. 8, 54–58 (2011).

    Article  ADS  Google Scholar 

  5. Field, M. et al. Coulomb blockade as a noninvasive probe of local density of states. Phys. Rev. Lett. 77, 350–353 (1996).

    Article  ADS  Google Scholar 

  6. Elzerman, J. M. et al. Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308 (2003).

    Article  ADS  Google Scholar 

  7. Aguado, R. & Kouwenhoven, L. P. Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors. Phys. Rev. Lett. 84, 1986–1989 (2000).

    Article  ADS  Google Scholar 

  8. Young, C. E. & Clerk, A. A. Inelastic back-action due to quantum point contact charge fluctuations. Phys. Rev. Lett. 104, 186803 (2010).

    Article  ADS  Google Scholar 

  9. Khrapai, V. S., Ludwig, S., Kotthaus, J. P., Tranitz, H. P. & Wegscheider, W. Double-dot quantum ratchet driven by an independently biased quantum point contact. Phys. Rev. Lett. 97, 176803 (2006).

    Article  ADS  Google Scholar 

  10. Taubert, D. et al. Telegraph noise in coupled quantum dot circuits induced by a quantum point contact. Phys. Rev. Lett. 100, 176805 (2008).

    Article  ADS  Google Scholar 

  11. Gasser, U. et al. Statistical electron excitation in a double quantum dot induced by two independent quantum point contacts. Phys. Rev. B 79, 035303 (2009).

    Article  ADS  Google Scholar 

  12. Schinner, G. J., Tranitz, H. P., Wegscheider, W., Kotthaus, J. P. & Ludwig, S. Phonon-mediated nonequilibrium interaction between nanoscale devices. Phys. Rev. Lett. 102, 186801 (2009).

    Article  ADS  Google Scholar 

  13. Harbusch, D., Taubert, D., Tranitz, H. P., Wegscheider, W. & Ludwig, S. Phonon-mediated versus coulombic back-action in quantum dot circuits. Phys. Rev. Lett. 104, 196801 (2010).

    Article  ADS  Google Scholar 

  14. Miller, A. & Abrahams, E. Impurity conduction at low concentrations. Phys. Rev. 120, 745–755 (1960).

    Article  ADS  Google Scholar 

  15. Imry, Y. in Tunnelling Phenomena in Solids (eds Burstein, E. & Lundqvsit, S.) 563–576 (Plenum, 1969).

    Book  Google Scholar 

  16. Brandes, T. Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315–474 (2005).

    Article  ADS  Google Scholar 

  17. Fujisawa, T. et al. Spontaneous emission spectrum in double quantum dot devices. Science 282, 932–935 (1998).

    Article  ADS  Google Scholar 

  18. Roulleau, P. et al. Coherent electron–phonon coupling in tailored quantum systems. Nature Commun. 2, 239 (2011).

    Article  Google Scholar 

  19. Gaudreau, L. et al. Stability diagram of a few-electron triple dot. Phys. Rev. Lett. 97, 036807 (2006).

    Article  ADS  Google Scholar 

  20. Schröer, D. et al. Electrostatically defined serial triple quantum dot charged with few electrons. Phys. Rev. B 76, 075306 (2007).

    Article  ADS  Google Scholar 

  21. Rogge, M. C. & Haug, R. J. Two-path transport measurements on a triple quantum dot. Phys. Rev. B 77, 193306 (2008).

    Article  ADS  Google Scholar 

  22. Rogge, M. C. & Haug, R. J. The three dimensionality of triple quantum dot stability diagrams. New J. Phys. 11, 113037 (2009).

    Article  ADS  Google Scholar 

  23. Granger, G. et al. Three-dimensional transport diagram of a triple quantum dot. Phys. Rev. B 82, 075304 (2010).

    Article  ADS  Google Scholar 

  24. Jasiukiewicz, C. Acoustic phonon emission by hot 2D electrons: The angular distribution of the emitted phonon power. Semicond. Sci. Technol. 13, 537–547 (1998).

    Article  ADS  Google Scholar 

  25. Taubert, D., Schuh, D., Wegscheider, W. & Ludwig, S. Determination of energy scales in few-electron double quantum dots. Rev. Scient. Inst. 82, 123905 (2011).

    Article  ADS  Google Scholar 

  26. Pedersen, M., van Langen, S. & Büttiker, M. Charge fluctuations in quantum point contacts and chaotic cavities in the presence of transport. Phys. Rev. B 57, 1838–1846 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.L. and D. T. acknowledge financial support by the German Science Foundation via SFB 631, LU 819/4-1, and the German Excellence Initiative via the ‘Nanosystems Initiative Munich’ (NIM). G.G. acknowledges funding from the NRC–CNRS collaboration. A.S.S. and A.A.C. acknowledge funding from NSERC and CIFAR.

Author information

Authors and Affiliations

Authors

Contributions

D.T. fabricated the DQD samples, performed the DQD experiments and analysed the data. D.H. performed preliminary experiments on another DQD sample. A.K. fabricated the TQD sample. L.G., G.G. and S.S. performed the TQD experiments and analysed the data. P.Z. assisted in these experiments. D.S. and W.W. grew the heterostructures for the DQD samples; Z.R.W. optimized and grew the heterostructure for the TQD sample. D.T., L.G., C.E.Y., A.A.C., A.S.S. and S.L. wrote the paper. C.E.Y. and A.A.C. developed the theoretical model and supported both experimental groups. A.S.S. and S.L. supervised the experimental collaboration from Ottawa and Munich. The experiments have been supervised collaboratively by A.S.S. and S.L.; the theoretical modelling was surpervised by A.A.C.

Corresponding author

Correspondence to S. Ludwig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granger, G., Taubert, D., Young, C. et al. Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits. Nature Phys 8, 522–527 (2012). https://doi.org/10.1038/nphys2326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing