Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast entangling gates between nuclear spins using photoexcited triplet states

Abstract

The representation of information within the spins of electrons and nuclei has been a powerful method in the ongoing development of quantum computers1,2. Although nuclear spins are advantageous as quantum bits (qubits) because of their long coherence lifetimes (exceeding seconds3), they exhibit very slow spin interactions and have weak thermal polarization. A coupled electron spin can be used to polarize the nuclear spin4,5,6 and create fast single-qubit gates7,8, however, the permanent presence of electron spins is a source of nuclear decoherence. Here we show how a transient electron spin, arising from the optically excited triplet state of C60, can be used to hyperpolarize, manipulate and measure two nearby nuclear spins. Implementing a scheme that uses the spinor nature of the electron9, we performed an entangling gate in hundreds of nanoseconds: five orders of magnitude faster than the liquid-state J coupling. This approach can be widely applied to systems comprising an electron spin coupled to multiple nuclear spins, such as nitrogen–vacancy centres in diamond10, while the successful use of a transient electron spin motivates the design of new molecules able to exploit photoexcited triplet states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DMHFP molecule has an excited triplet state which couples to two nuclear spins: 1H and 31P.
Figure 2: Two different ways to implement nuclear spin entangling gates using the triplet electron spin.
Figure 3: Density matrix tomography results.

Similar content being viewed by others

References

  1. Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. Proc. Natl Acad. Sci. USA 94, 1634–1639 (1997).

    Article  ADS  Google Scholar 

  2. Laflamme, R., Knill, E., Zurek, W. H., Catasti, P. & Mariappan, S. V. S. NMR Greenberger–Horne–Zeilinger states. Phil. Trans. R. Soc. A 356, 1941–1948 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  3. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  ADS  Google Scholar 

  4. Maly, T. et al. Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 128, 052211 (2008).

    Article  ADS  Google Scholar 

  5. Barnes, A. B. et al. High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Res. 34, 237–263 (2008).

    Article  ADS  Google Scholar 

  6. Simmons, S. et al. Entanglement in a solid-state spin ensemble. Nature 470, 69–72 (2011).

    Article  ADS  Google Scholar 

  7. Morton, J. J. L. et al. Bang-bang control of fullerene qubits using ultrafast phase gates. Nature Phys. 2, 40–43 (2006).

    Article  ADS  Google Scholar 

  8. Hodges, J. S., Yang, J. C., Ramanathan, C. & Cory, D. G. Universal control of nuclear spins via anisotropic hyperfine interactions. Phys. Rev. A 78, 010303 (2008).

    Article  ADS  Google Scholar 

  9. Schaffry, M., Lovett, B. W. & Gauger, E. M. Creating nuclear spin entanglement using an optical degree of freedom. Phys. Rev. A 84, 081305 (2011).

    Article  Google Scholar 

  10. Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

  11. Morton, J. J. L. & Lovett, B. W. Hybrid solid-state qubits: The powerful role of electron spins. Annu. Rev. Condens. Matter Phys. 2, 1–54 (2011).

    Article  Google Scholar 

  12. Kubo, Y. et al. Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble. Phys. Rev. Lett. 107, 220501 (2011).

    Article  ADS  Google Scholar 

  13. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  14. Ryan, C. A., Emerson, J., Poulin, D., Negrevergne, C. & Laflamme, R. Characterization of complex quantum dynamics with a scalable NMR information processor. Phys. Rev. Lett. 95, 250502 (2005).

    Article  ADS  Google Scholar 

  15. Vandersypen, L. M. K. et al. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001).

    Article  ADS  Google Scholar 

  16. Jones, J. A. Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc. 38, 325–360 (2001).

    Article  Google Scholar 

  17. Ryan, C. A., Moussa, O., Baugh, J. & Laflamme, R. Spin based heat engine: Demonstration of multiple rounds of algorithmic cooling. Phys. Rev. Lett. 100, 140501 (2008).

    Article  ADS  Google Scholar 

  18. Davies, E. R. A new pulse ENDOR technique. Phys. Lett. A 47, 1–2 (1974).

    Article  ADS  Google Scholar 

  19. Tyryshkin, A. M. et al. Coherence of spin qubits in silicon. J. Phys. 18, S783–S794 (2006).

    Google Scholar 

  20. Khaneja, N. et al. Shortest paths for efficient control of indirectly coupled qubits. Phys. Rev. A 75, 012322 (2007).

    Article  ADS  Google Scholar 

  21. Mitrikas, G., Sanakis, Y. & Papavassiliou, G. Ultrafast control of nuclear spins using only microwave pulses: Towards switchable solid-state quantum gates. Phys. Rev. A 81, 020305 (2010).

    Article  ADS  Google Scholar 

  22. Zhang, Y., Ryan, C., Laflamme, R. & Baugh, J. Coherent control of two nuclear spins using the anisotropic hyperfine interaction. Phys. Rev. Lett. 107, 170503 (2011).

    Article  ADS  Google Scholar 

  23. Gauger, E. M., Rohde, P. P., Stoneham, A. M. & Lovett, B. W. Strategies for entangling remote spins with unequal coupling to an optically active mediator. New J. Phys. 10, 073027 (2008).

    Article  ADS  Google Scholar 

  24. Isobe, H., Chen, A-J., Solin, N. & Nakamura, E. Synthesis of hydrophosphorylated fullerene under neutral conditions. Org. Lett. 7, 5633–5635 (2005).

    Article  Google Scholar 

  25. Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article  ADS  Google Scholar 

  26. Emshwiller, M., Hahn, E. & Kaplan, D. Pulsed nuclear resonance spectroscopy. Phys. Rev. 118, 414–424 (1960).

    Article  ADS  Google Scholar 

  27. Schweiger, A. & Jeschke, G. Principles of Pulse Electron Paramagnetic Resonance (Oxford Univ. Press, 2001).

    Google Scholar 

  28. Aharonov, Y. & Anandan, J. Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  29. Kamata, Y., Akiyama, K., Tero-Kubota, S. & Tabata, M. Two-laser two-color time-resolved EPR study on higher, excited-state triplet-singlet intersystem crossing of porphyrins and phthalocyanines. Appl. Magn. Res. 23, 409–420 (2003).

    Article  Google Scholar 

  30. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Lovett, M. Schaffry, E. Gauger, C. Kay, A. Ardavan, A. Briggs and D. Ceresoli for helpful discussions. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) through the Centre for Advanced Electron Spin Resonance (CAESR) (EP/D048559/1) and the Materials World Network (EP/I035536/1), as well as by the European Research Council (ERC) under the European Community’s Seventh Framework Programme (FP7/2,007-2,013)/ERC grant agreement no. 279,781. We thank the Violette and Samuel Glasstone Fund, Clarendon Fund, John Templeton Foundation, St John’s College, Oxford, and the Royal Society for support.

Author information

Authors and Affiliations

Authors

Contributions

V.F., S.S. and J.J.L.M. designed and performed the experiments, analysed the results and wrote the manuscript. V.F. and F.G. performed the density functional calculations. S.D.K. and H.L.A. designed and synthesised the molecule. All authors discussed the results and manuscript.

Corresponding author

Correspondence to John J. L. Morton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filidou, V., Simmons, S., Karlen, S. et al. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nature Phys 8, 596–600 (2012). https://doi.org/10.1038/nphys2353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing