Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping Dirac quasiparticles near a single Coulomb impurity on graphene

Abstract

The response of Dirac fermions to a Coulomb potential is predicted to differ significantly from how non-relativistic electrons behave in traditional atomic and impurity systems1,2,3. Surprisingly, many key theoretical predictions for this ultra-relativistic regime have not been tested4,5,6,7,8,9,10,11,12. Graphene, a two-dimensional material in which electrons behave like massless Dirac fermions13,14, provides a unique opportunity to test such predictions. Graphene’s response to a Coulomb potential also offers insight into important material characteristics, including graphene’s intrinsic dielectric constant6,8, which is the primary factor determining the strength of electron–electron interactions in graphene15. Here we present a direct measurement of the nanoscale response of Dirac fermions to a single Coulomb potential placed on a gated graphene device. Scanning tunnelling microscopy was used to fabricate tunable charge impurities on graphene, and to image electronic screening around them for a Q = +1|e| charge state. Electron-like and hole-like Dirac fermions were observed to respond differently to a Coulomb potential. Comparing the observed electron–hole asymmetry to theoretical simulations has allowed us to test predictions for how Dirac fermions behave near a Coulomb potential, as well as extract graphene’s intrinsic dielectric constant: ɛg = 3.0±1.0. This small value of ɛg indicates that electron–electron interactions can contribute significantly to graphene properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation, topography and electronic structure of a Co trimer on graphene.
Figure 2: Controlling the charge state of a Co trimer on graphene.
Figure 3: dI/dV spectra near a charged Co trimer on graphene.
Figure 4: dI/dV versus distance linescans near a charged Co trimer on graphene.

Similar content being viewed by others

References

  1. Greiner, W., Muller, B. & Rafelski, J. Quantum Electrodynamics of Strong Fields (Springer, 1985).

    Book  Google Scholar 

  2. Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: Non-relativistic Theory (Pergamon, 1981).

    MATH  Google Scholar 

  3. Zeldovic, Y. B. & Popov, V. S. Electronic structure of superheavy atoms. Sov. Phys. Usp 14, 673–694 (1972).

    Article  ADS  Google Scholar 

  4. Biswas, R. R., Sachdev, S. & Son, D. T. Coulomb impurity in graphene. Phys. Rev. B 76, 205122 (2007).

    Article  ADS  Google Scholar 

  5. Novikov, D. S. Elastic scattering theory and transport in graphene. Phys. Rev. B 76, 245435 (2007).

    Article  ADS  Google Scholar 

  6. Pereira, V. M., Nilsson, J. & Castro Neto, A. H. Coulomb impurity problem in graphene. Phys. Rev. Lett. 99, 166802 (2007).

    Article  ADS  Google Scholar 

  7. Shytov, A. V., Katsnelson, M. I. & Levitov, L. S. Atomic collapse and quasi-Rydberg states in graphene. Phys. Rev. Lett. 99, 246802 (2007).

    Article  ADS  Google Scholar 

  8. Shytov, A. V., Katsnelson, M. I. & Levitov, L. S. Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett. 99, 236801 (2007).

    Article  ADS  Google Scholar 

  9. Terekhov, I. S., Milstein, A. I., Kotov, V. N. & Sushkov, O. P. Screening of Coulomb impurities in graphene. Phys. Rev. Lett. 100, 076803 (2008).

    Article  ADS  Google Scholar 

  10. Chen, J. H. et al. Charged-impurity scattering in graphene. Nature Phys. 4, 377–381 (2008).

    Article  ADS  Google Scholar 

  11. McChesney, J. L. et al. Extended van Hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 136803 (2010).

    Article  ADS  Google Scholar 

  12. Zhou, S. Y., Siegel, D. A., Fedorov, A. V. & Lanzara, A. Metal to insulator transition in epitaxial graphene induced by molecular doping. Phys. Rev. Lett. 101, 086402 (2008).

    Article  ADS  Google Scholar 

  13. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  14. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  15. Kotov, V. N., Uchoa, B., Pereira, V. M., Castro Neto, A. H. & Guinea, F. Electron–electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. http://arxiv.org/abs/1012.3484 (2011, in the press).

  16. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  17. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  18. Decker, R. et al. Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 11, 2291–2295 (2011).

    Article  ADS  Google Scholar 

  19. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  ADS  Google Scholar 

  20. Brar, V. W. et al. Gate-controlled ionization and screening of cobalt adatoms on a graphene surface. Nature Phys. 7, 43–47 (2011).

    Article  ADS  Google Scholar 

  21. Marczinowski, F., Wiebe, J., Meier, F., Hashimoto, K. & Wiesendanger, R. Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Phys. Rev. B 77, 115318 (2008).

    Article  ADS  Google Scholar 

  22. Pradhan, N. A., Liu, N., Silien, C. & Ho, W. Atomic scale conductance induced by single impurity charging. Phys. Rev. Lett. 94, 076801 (2005).

    Article  ADS  Google Scholar 

  23. Li, J., Schneider, W-D. & Berndt, R. Local density of states from spectroscopic scanning-tunneling-microscope images: Ag(111). Phys. Rev. B 56, 7656–7659 (1997).

    Article  ADS  Google Scholar 

  24. Wittneven, C., Dombrowski, R., Morgenstern, M. & Wiesendanger, R. Scattering states of ionized dopants probed by low temperature scanning tunneling spectroscopy. Phys. Rev. Lett. 81, 5616–5619 (1998).

    Article  ADS  Google Scholar 

  25. Zhang, Y. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Phys. 4, 627–630 (2008).

    Article  ADS  Google Scholar 

  26. Ando, T. Screening effect and impurity scattering in monolayer graphene. Phys. Soc. Jpn 75, 074716 (2006).

    Article  ADS  Google Scholar 

  27. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  ADS  Google Scholar 

  28. Brar, V. W. et al. Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys. Rev. Lett. 104, 036805 (2010).

    Article  ADS  Google Scholar 

  29. Reed, J. P. et al. The effective fine-structure constant of freestanding graphene measured in graphite. Science 330, 805–808 (2010).

    Article  ADS  Google Scholar 

  30. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nature Phys. 7, 701–704 (2011).

    Article  ADS  Google Scholar 

  31. Siegel, D. A. et al. Many-body interactions in quasi-freestanding graphene. Proc. Natl Acad. Sci. USA 108, 11365–11369 (2011).

    Article  ADS  Google Scholar 

  32. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  Google Scholar 

  33. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Research supported by the Office of Naval Research Multidisciplinary University Research Initiative award no. N00014-09-1-1066 (graphene device preparation and characterization), by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231 (STM instrumentation development and measurements), and by the National Science Foundation award no. DMR-0906539 (numerical simulations).

Author information

Authors and Affiliations

Authors

Contributions

Y.W., V.W.B. and M.F.C. designed the experiment and made the measurements. Q.W., W.R., H-Z.T. and A.Z. facilitated the sample fabrication. A.V.S., L.S.L. and Y.W. carried out the theoretical calculation. Y.W., V.W.B., A.V.S., L.S.L. and M.F.C. carried out the analysis and wrote the paper.

Corresponding author

Correspondence to Michael F. Crommie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Brar, V., Shytov, A. et al. Mapping Dirac quasiparticles near a single Coulomb impurity on graphene. Nature Phys 8, 653–657 (2012). https://doi.org/10.1038/nphys2379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing