Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chirality of matter shows up via spin excitations

Abstract

An object is considered chiral if its mirror image cannot be brought to coincide with itself by any sequence of simple rotations and translations1. Chirality on a microscopic scale—in molecules2,3, clusters4, crystals5 and metamaterials6,7—can be detected by differences in the optical response of a substance to right- and left-handed circularly polarized light2,3. Such ‘optical activity’ is generally considered to be a consequence of the specific distribution of electronic charge within chiral materials. Here, we demonstrate that a similar response can also arise as a result of spin excitations in a magnetic material. Besides this spin-mediated optical activity (SOA), we observe notable differences in the response of Ba2CoGe2O7—a square-lattice antiferromagnet that undergoes a magnetic-field driven transition to a chiral form—to terahertz radiation travelling parallel or antiparallel to an applied magnetic field. At certain frequencies the strength of this magneto-chiral effect8,9,10 is almost complete, with the difference between parallel and antiparallel absorption of the material approaching 100%. We attribute these phenomena to the magnetoelectric 11,12 nature of spin excitations as they interact with the electric and magnetic components of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiroptical spectroscopy: an efficient probe of chirality both via charge and spin excitations.
Figure 2: Main aspects of magnetically induced chirality.
Figure 3: Absorption (α), polarization rotation (θ) and ellipticity (η) spectra of the spin-wave modes for light propagation along the [001] axis as measured by time-domain terahertz spectroscopy and calculated theoretically.
Figure 4: Magneto-chiral effect in the field-induced chiral state.

Similar content being viewed by others

References

  1. Kelvin, L. Baltimore Lectures on the Molecular Dynamics and the Wave Theory of Light (C.J. Clay & Sons, 1904).

    MATH  Google Scholar 

  2. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  3. Berova, N., Nakanishi, K. & Woody, R. W. Circular Dichroism: Principles and Applications 2nd edn (Wiley-VCH, 2000).

    Google Scholar 

  4. Micali, N. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chem. 4, 201–207 (2012).

    Article  ADS  Google Scholar 

  5. Hsu, E. C. & Holzwarth, G. Vibrational circular dichroism observed in crystalline α-NiSO·6HO and α-ZnSeO·6HO between 1900 and 5000 cm−1. J. Chem. Phys. 59, 4678–4685 (1973).

    Article  ADS  Google Scholar 

  6. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).

    Article  ADS  Google Scholar 

  7. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech. 5, 783–787 (2010).

    Article  ADS  Google Scholar 

  8. Baranova, N. B. & Zeldovich, B. Ya. Theory of a new linear magnetorefractive effect in liquids. Mol. Phys. 38, 1085–1098 (1979).

    Article  ADS  Google Scholar 

  9. Barron, L. D. & Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715–730 (1984).

    Article  ADS  Google Scholar 

  10. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  ADS  Google Scholar 

  11. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    Article  ADS  Google Scholar 

  12. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

    Article  Google Scholar 

  13. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols 1, 2876–2890 (2007).

    Article  Google Scholar 

  14. Stephens, P. J., Devlin, F. J. & Pan, J-J. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20, 643–663 (2008).

    Article  Google Scholar 

  15. Alagna, L. et al. X-ray natural circular dichroism. Phys. Rev. Lett. 80, 4799–4802 (1998).

    Article  ADS  Google Scholar 

  16. Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater. 7, 729–734 (2008).

    Article  ADS  Google Scholar 

  17. Rikken, G. L. J. A. & Raupach, E. Pure and cascaded magnetochiral anisotropy in optical absorption. Phys. Rev. E 58, 5081–5084 (1998).

    Article  ADS  Google Scholar 

  18. Koerdt, C., Duchs, G. & Rikken, G. L. J. A. Magnetochiral anisotropy in Bragg scattering. Phys. Rev. Lett. 91, 073902 (2003).

    Article  ADS  Google Scholar 

  19. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008).

    Article  ADS  Google Scholar 

  20. Van Aken, B. B., Rivera, J-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007).

    Article  ADS  Google Scholar 

  21. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006).

    Article  ADS  Google Scholar 

  22. Kida, N. et al. Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites. J. Opt. Soc. Am. B 26, A35–A51 (2009).

    Article  Google Scholar 

  23. Sushkov, A. B., Aguilar, R. V., Park, S., Cheong, S-W. & Drew, H. D. Electromagnons in multiferroic YMn2O5 and TbMn2O5 . Phys. Rev. Lett. 98, 027202 (2007).

    Article  ADS  Google Scholar 

  24. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 . Nature Mater. 9, 975–979 (2010).

    Article  ADS  Google Scholar 

  25. Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011).

    Article  ADS  Google Scholar 

  26. Zheludev, A. et al. Spin waves and the origin of commensurate magnetism in Ba2CoGe2O7 . Phys. Rev. B 68, 024428 (2003).

    Article  ADS  Google Scholar 

  27. Murakawa, H., Onose, Y., Miyahara, S., Furukawa, N. & Tokura, Y. Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7 . Phys. Rev. Lett. 103, 137202 (2010).

    Article  ADS  Google Scholar 

  28. Perez-Mato, J. M. & Riberio, J. L. On the symmetry and the signature of atomic mechanisms in multiferroics: the example of Ba2CoGe2O7 . Acta Crystallogr. A 67, 264–268 (2011).

    Article  ADS  Google Scholar 

  29. Miyahara, S. & Furukawa, N. Theory of magnetoelectric resonance in two-dimensional S = 3/2 antiferromagnet Ba2CoGe2O7 via spin-dependent metal-ligand hybridization mechanism. J. Phys. Soc. Jpn 80, 073708 (2011).

    Article  ADS  Google Scholar 

  30. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  31. Nuss, M. C. & Orenstein, J. in Millimeter and Submillimeter Wave Spectroscopy of Solids (ed. Grüner, G.) (Springer, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank T. Arima and K. Penc for discussions. This work was supported by KAKENHI, MEXT of Japan, by Funding Program for World-Leading Innovation R&D on Science and Technology (FIRST program) on ‘Quantum Science on Strong Correlation’, by Hungarian Research Funds OTKA PD75615, Bolyai 00256/08/11, TA’MOP-4.2.2.B-10/1–2010-0009 and by the Estonian Ministry of Education and Research under Grant SF0690029s09, and Estonian Science Foundation under Grants ETF8170 and ETF8703.

Author information

Authors and Affiliations

Authors

Contributions

S.B., I.K., T.R., U.N., D.S. and L.D. performed the measurements and analysed the data; H.M. and Y.O. contributed to the sample preparation; N.K., R.S., T.R. and U.N. developed the experimental set-up; S.M. and N.F. developed the theory; S.B. and I.K. wrote the manuscript; and Y.T. and I.K. planned the project.

Corresponding author

Correspondence to I. Kézsmárki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordács, S., Kézsmárki, I., Szaller, D. et al. Chirality of matter shows up via spin excitations. Nature Phys 8, 734–738 (2012). https://doi.org/10.1038/nphys2387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing