Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene

Abstract

Understanding how the mechanical behaviour of materials deviates at the nanoscale from the macroscopically established concepts is a key challenge of particular importance for graphene, given the complex interplay between its nanoscale morphology and electronic properties1,2,3,4,5. In this work, the (sub)nanometre-wavelength periodic rippling of suspended graphene nanomembranes has been realized by thermal strain engineering and investigated using scanning tunnelling microscopy. This allows us to explore the rippling of a crystalline membrane with wavelengths comparable to its lattice constant. The observed nanorippling mode violates the predictions of the continuum model6, and evidences the breakdown of the plate idealization7 of the graphene monolayer. Nevertheless, microscopic simulations based on a quantum mechanical description of the chemical binding accurately describe the observed rippling mode and elucidate the origin of the continuum model breakdown. Spatially resolved tunnelling spectroscopy measurements indicate a substantial influence of the nanoripples on the local electronic structure of graphene and reveal the formation of one-dimensional electronic superlattices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional STM images of nanotrenches and graphene nanoripples.
Figure 2: Atomic-resolution STM images of graphene nanoripples.
Figure 3: Atomic-scale simulations of graphene nanoripples.
Figure 4: Local electronic density of states map of graphene nanoripples.

Similar content being viewed by others

References

  1. Katsnelson, M. I. & Geim, A. K. Electron scattering on microscopic corrugations in graphene. Phil. Trans. R. Soc. A 366, 195–204 (2008).

    Article  ADS  Google Scholar 

  2. Vazquez de Parga, A. L. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008).

    Article  ADS  Google Scholar 

  3. de Juan, F., Cortijo, A., Vozmediano, M. A. H. & Cano, A. Aharonov–Bhom interferences from local deformations in graphene. Nature Phys. 7, 810–815 (2011).

    Article  ADS  Google Scholar 

  4. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    Article  ADS  Google Scholar 

  5. Ni, G. X. et al. Quasi periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport. ACS Nano 6, 1158–1164 (2012).

    Article  Google Scholar 

  6. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nature Nanotech. 4, 562–566 (2009).

    Article  ADS  Google Scholar 

  7. Zhang, D. B., Akatyeva, E. & Dumitrica, T. Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett. 106, 255503 (2011).

    Article  ADS  Google Scholar 

  8. Kim, E. & Castro-Neto, A. H. Graphene as an electronic membrane. Europhys. Lett. 84, 57007 (2008).

    Article  ADS  Google Scholar 

  9. Isacsson, A., Jonsson, L. M., Kinaret, J. M. & Jonson, M. Electronic superlattices in corrugated graphene. Phys. Rev. B 77, 035423 (2008).

    Article  ADS  Google Scholar 

  10. Teague, M. L. et al. Evidence of strain induced local conductance modulations in single-layer graphene on SiO2 . Nano Lett. 9, 2542–2548 (2009).

    Article  ADS  Google Scholar 

  11. Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nature Mater. 6, 858–861 (2007).

    Article  ADS  Google Scholar 

  12. Deshpande, A., Bao, W, Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009).

    Article  ADS  Google Scholar 

  13. Brey, L. & Palacios, J. J. Exchange-induced charge inhomogeneities in rippled neutral graphene. Phys. Rev. B. 77, 041403(R) (2008).

    Article  ADS  Google Scholar 

  14. Park, C. H., Yang, L., Son, Y. W., Cohen, M. L. & Louie, S. G. Anisotropic behavior of massless Dirac fermions in graphene under periodic potentials. Nature Phys. 4, 213–217 (2008).

    Article  ADS  Google Scholar 

  15. Boukhvalov, D. W & Kastnelson, M. I. Enhancement of chemical activity in corrugated graphene. J. Chem. Phys. C 113, 14176–14168 (2009).

    Article  Google Scholar 

  16. Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  17. Pai, W. W. et al. Evolution of two-dimensional wormlike nanoclusters on metal surfaces. Phys. Rev. Lett. 86, 3088–3091 (2001).

    Article  ADS  Google Scholar 

  18. Rasool, H. I. et al. Atomic-scale characterization of graphene on copper (100) single crystals. J. Am. Chem. Soc. 133, 12536–12543 (2011).

    Article  Google Scholar 

  19. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  ADS  Google Scholar 

  20. Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography. Nature Nanotech. 3, 397–401 (2008).

    Article  Google Scholar 

  21. Hwang, C. et al. Initial stage of graphene growth on a Cu substrate. J. Phys. Chem. C 115, 22369–22374 (2011).

    Article  Google Scholar 

  22. Wofford, J. M., Nie, S, McCarty, K. F., Bartelt, N. C. & Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 10, 4890–4896 (2010).

    Article  ADS  Google Scholar 

  23. Chen, C. C. et al. Raman spectroscopy of ripple formation in suspended graphene. Nano Lett. 9, 4172–4176 (2009).

    Article  ADS  Google Scholar 

  24. Zakharenko, K. V., Katsnelson, M. I. & Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 102, 046808 (2009).

    Article  ADS  Google Scholar 

  25. Wang, Z. & Devel, M. Periodic ripples in suspended graphene. Phys. Rev. B 83, 125422 (2011).

    Article  ADS  Google Scholar 

  26. Tsoukleri, G. et al. Subjecting a graphene monolayer to tension and compression. Small 5, 2397–2402 (2009).

    Article  Google Scholar 

  27. Frauenheim, D., Köhler, T., Seifert, Th. & Kaschner, G. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B 51, 12947–12957 (1995).

    Article  ADS  Google Scholar 

  28. Koenig, S. P., Bodetti, N. G., Dunn, M. L. & Bunch, J. S. Ultrastrong adhesion of graphene membranes. Nature Nanotech. 6, 543–546 (2011).

    Article  ADS  Google Scholar 

  29. Koshkinen, P. & Kit, O. O. Approximate modeling of spherical membranes. Phys. Rev. B 82, 235420 (2010).

    Article  ADS  Google Scholar 

  30. Xu, K., Cao, P. & Heath, J. R. Scanning tunneling microscopy characterization of the electrical properties of wrinkles in exfoliated graphene mono layers. Nano Lett. 9, 4446–4451 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The experimental work has been conducted within the framework of the Korean–Hungarian Joint Laboratory for Nanosciences through the Converging Research Center Program (2010K000980). L.T. acknowledges OTKA grant PD 91160 and the Bolyai fellowship and is grateful to the Alexander von Humboldt Foundation. P.N-I. and L.P.B. acknowledge OTKA grant K 101599. T.D. acknowledges NSF CAREER Grant CMMI-0747684.

Author information

Authors and Affiliations

Authors

Contributions

L.T. conceived and designed the experiments. L.T. and P.N-I. performed the STM experiments. S.J.K. and C.H. performed the growth experiments. T.D. provided the simulation results. L.T., T.D. and L.P.B. analysed the data. L.T. and T.D. wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Levente Tapasztó.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapasztó, L., Dumitrică, T., Kim, S. et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nature Phys 8, 739–742 (2012). https://doi.org/10.1038/nphys2389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing