Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental realization of a topological crystalline insulator in SnTe

Abstract

A topological insulator is an unusual quantum state of matter, characterized by the appearance, at its edges or on its surface, of a gapless metallic state that is protected by time-reversal symmetry1,2. The discovery of topological insulators has stimulated the search for other topological states protected by other symmetries3,4,5,6,7, such as the recently predicted8 topological crystalline insulator (TCI) in which the metallic surface states are protected by the mirror symmetry of the crystal. Here we present experimental evidence for the TCI phase in tin telluride (SnTe), which has been predicted to be a TCI (ref. 9). Our angle-resolved photoemission spectra show the signature of a metallic Dirac-cone surface band, with its Dirac point slightly away from the edge of the surface Brillouin zone in SnTe. Such a gapless surface state is absent in a cousin material, lead telluride, in line with the theoretical prediction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dirac-like band dispersion in SnTe.
Figure 2: Two-dimensional band dispersion of SnTe.
Figure 3: Comparison of the band structure between SnTe and PbTe.

Similar content being viewed by others

References

  1. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  2. Qi, X-L. & Zhang, S-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  3. Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article  ADS  Google Scholar 

  4. Kitaev, A. Periodic table for topological insulators and superconductors. Preprint at http://arxiv.org/abs/0901.2686v2 (2009).

  5. Ran, Y. Weak indices and dislocations in general topological band structures. Preprint at http://arxiv.org/abs/1006.5454v2 (2010).

  6. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Article  ADS  Google Scholar 

  7. Li, R., Wang, J., Qi, X-L. & Zhang, S-C. Dynamical axion field in topological magnetic insulators. Nature Phys. 6, 284–288 (2010).

    Article  ADS  Google Scholar 

  8. Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

    Article  ADS  Google Scholar 

  9. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nature Commun. 3, 982 (2012).

    Article  Google Scholar 

  10. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  11. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  12. Xu, C. & Moore, J. E. Stability of the quantum spin Hall effect: Effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006).

    Article  ADS  Google Scholar 

  13. Qi, X-L., Hughes, T. L. & Zhang, S-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Article  ADS  Google Scholar 

  14. Tung, Y. W. & Cohen, M. L. Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Phys. Rev. 180, 823–826 (1969).

    Article  ADS  Google Scholar 

  15. Melvin, J. S. & Hendry, D. C. Self-consistent relativistic energy bands for tin telluride. J. Phys. C 12, 3003–3012 (1979).

    Article  ADS  Google Scholar 

  16. Littlewood, P. B. et al. Band structure of SnTe studied by photoemission spectroscopy. Phys. Rev. Lett. 105, 086404 (2010).

    Article  ADS  Google Scholar 

  17. Richard Burke, J. Jr, Allgaier, R. S., Houston, B. B., Babiskin, J. & Siebenmann, P. G. Shubnikov-de Haas effect in SnTe. Phys. Rev. Lett. 14, 360–361 (1965).

    Article  ADS  Google Scholar 

  18. Allgaier, R. S. & Houston, B. Weak-field magnetoresistance and the valence-band structure of SnTe. Phys. Rev. B 5, 2186–2197 (1972).

    Article  ADS  Google Scholar 

  19. Iizumi, M., Hamaguchi, Y., Komatsubara, K. F. & Kato, Y. Phase transition in SnTe with low carrier concentration. J. Phys. Soc. Jpn 38, 443–449 (1975).

    Article  ADS  Google Scholar 

  20. Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nature Phys. 3, 36–40 (2007).

    Article  ADS  Google Scholar 

  21. Nakayama, K., Sato, T., Takahashi, T. & Murakami, H. Doping induced evolution of Fermi surface in low carrier superconductor Tl-doped PbTe. Phys. Rev. Lett. 100, 227004 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank L. Fu for stimulating discussions. We also thank M. Komatsu, M. Nomura, E. Ieki, T. Takahashi, N. Inami, H. Kumigashira and K. Ono for their assistance in ARPES measurements, and T. Ueyama and K. Eto for their assistance in crystal growth. This work was supported by JSPS (NEXT Program and KAKENHI 23224010), JST-CREST, MEXT of Japan (Innovative Area Topological Quantum Phenomena), AFOSR (AOARD 124038) and KEK-PF (proposal number: 2012S2-001).

Author information

Authors and Affiliations

Authors

Contributions

Y.T., T.S., K.N., S.S. and T.T. performed ARPES measurements. Z.R., K.S. and Y.A. carried out the growth of the single crystals and their characterizations. Y.T., T.S. and Y.A. conceived the experiments and wrote the manuscript.

Corresponding authors

Correspondence to T. Sato or Yoichi Ando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5500 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y., Ren, Z., Sato, T. et al. Experimental realization of a topological crystalline insulator in SnTe. Nature Phys 8, 800–803 (2012). https://doi.org/10.1038/nphys2442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing