Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

Abstract

Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves1,2,3,4,5 (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin and charge density wave order5,6,7. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure8. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy scales, and the high-Tc superconductivity forms from a pre-existing CDW environment. Our results provide a mechanism for the formation of small Fermi surface pockets9, which explain the negative Hall and Seebeck effects10,11 and the ‘Tc plateau’12 in this material when underdoped.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Incommensurate charge–density-wave order.
Figure 2: Competition between charge–density-wave order and superconductivity.
Figure 3: Real space and reciprocal space pictures.
Figure 4: Phase diagram of YBa2Cu3O7−x.

Similar content being viewed by others

References

  1. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  Google Scholar 

  2. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  Google Scholar 

  3. Vojta, M. Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009).

    Article  ADS  Google Scholar 

  4. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Neutron scattering study of the charge–density wave transitions in 2H–TaSe2 and 2H–NbSe2 . Phys. Rev. B 16, 801–819 (1977).

    Article  ADS  Google Scholar 

  5. Demler, E., Sachdev, S. & Zhang, Y. Spin-ordering quantum transitions of superconductors in a magnetic field. Phys. Rev. Lett. 87, 067202 (2001).

    Article  ADS  Google Scholar 

  6. Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  7. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.05CuO4 . Phys. Rev. B 70, 104517 (2004).

    Article  ADS  Google Scholar 

  8. Von Zimmermann, M. et al. Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. Phys. Rev. B 68, 104515 (2003).

    Article  ADS  Google Scholar 

  9. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-T c superconductor. Nature 447, 565–568 (2007).

    Article  ADS  Google Scholar 

  10. LeBoeuf, D. et al. Electron pockets in the Fermi surface of hole-doped high-T c superconductors. Nature 450, 533–536 (2007).

    Article  ADS  Google Scholar 

  11. Laliberté, F. et al. Fermi-surface reconstruction by stripe order in cuprate superconductors. Nature Commun. 2, 432 (2011).

    Article  ADS  Google Scholar 

  12. Liang, R. et al. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006).

    Article  ADS  Google Scholar 

  13. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    Article  ADS  Google Scholar 

  14. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    Article  ADS  Google Scholar 

  15. Abbamonte, P. Charge modulations versus strain waves in resonant x-ray scattering. Phys. Rev. B 74, 195113 (2006).

    Article  ADS  Google Scholar 

  16. Schmidt, A. R. et al. Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging. New J. Phys. 13, 065014 (2011).

    Article  ADS  Google Scholar 

  17. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  18. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008).

    Article  ADS  Google Scholar 

  19. Robertson, J. A. et al. Distinguishing patterns of charge order: Stripes or checkerboards. Phys. Rev. B 74, 134507 (2006).

    Article  ADS  Google Scholar 

  20. Reznik, D. et al. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006).

    Article  ADS  Google Scholar 

  21. Haug, D. et al. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x . New J. Phys. 12, 105006 (2010).

    Article  ADS  Google Scholar 

  22. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

    Article  ADS  Google Scholar 

  23. Khaykovich, B. et al. Enhancement of long-range magnetic order by magnetic field in superconducting La2CuO4+y . Phys. Rev. B 66, 014528 (2002).

    Article  ADS  Google Scholar 

  24. Chang, J. et al. Tuning competing orders in La2−xSrxCuO4 cuprate superconductors by the application of an external magnetic field. Phys. Rev. B 78, 104525 (2008).

    Article  ADS  Google Scholar 

  25. Dai, P., Mook, H. A., Hunt, R. D. & Dogan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x . Phys. Rev. B 63, 054525 (2001).

    Article  ADS  Google Scholar 

  26. LeBoeuf, D. et al. Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements. Phys. Rev. B 83, 054506 (2011).

    Article  ADS  Google Scholar 

  27. Riggs, S. C. et al. Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor. Nature Phys. 7, 332–335 (2011).

    Article  ADS  Google Scholar 

  28. Carrington, A. & Yelland, E. A. Band-structure calculations of Fermi-surface pockets in ortho-II YBa2Cu3O6.5 . Phys. Rev. B 76, 140508 (2007).

    Article  ADS  Google Scholar 

  29. Li, Y. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ . Nature 455, 372–375 (2008).

    Article  ADS  Google Scholar 

  30. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-T c superconductor. Nature 463, 519–522 (2010).

    Article  ADS  Google Scholar 

  31. Berg, E., Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Striped superconductors: How spin, charge and superconducting orders intertwine in the cuprates. New J. Phys. 11, 115004 (2009).

    Article  ADS  Google Scholar 

  32. Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-III ordered YBa2Cu3O6+δ identified by resonant elastic x-ray scattering. Preprint at http://arxiv.org/abs/1207.3667.

  33. Chang, J. et al. Nernst effect in the cuprate superconductor YBa2Cu3Oy: Broken rotational and translational symmetries. Phys. Rev. B 84, 014507 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. L. Gyorffy, M. W. Long, J. A. Wilson, A. J. Schofield, J. R. Cooper, J. W. Loram, S. A. Kivelson, L. Taillefer, C. Bourbonnais, C. Proust and A. Kapitulnik for discussions and R. Nowak, G. R. Walsh and J. Blume for technical assistance. This work was supported by the EPSRC (grant numbers EP/G027161/1 and EP/J015423/1), the Wolfson Foundation, the Royal Society, the Danish Agency for Science, Technology and Innovation under DANSCATT and the Swiss National Science Foundation through NCCR-MaNEP and grant number PZ00P2_142434. J.C., N.B.C. and J.M. are grateful to L. Braicovich, G. Ghiringhelli, B. Keimer and M. Le Tacon for communicating their results to them after this experiment was completed.

Author information

Authors and Affiliations

Authors

Contributions

D.A.B., W.N.H. and R.L., prepared the samples. E.B., J.C., N.B.C., E.M.F., S.M.H., M.v.Z. and A.W. conceived and planned the experiment. E.B., J.C., N.B.C., E.M.F., S.M.H., A.T.H., J.L. and M.v.Z. carried out the experiment. J.C., E.M.F. and S.M.H. carried out data analysis and modelling. E.B, J.C., N.B.C., E.M.F and S.M.H. wrote the paper. J. M. was responsible for research direction and planning at PSI. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to J. Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 664 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, J., Blackburn, E., Holmes, A. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys 8, 871–876 (2012). https://doi.org/10.1038/nphys2456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing