Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables

Subjects

Abstract

Different approaches to quantum gravity, such as string theory1,2 and loop quantum gravity, as well as doubly special relativity3 and gedanken experiments in black-hole physics4,5,6, all indicate the existence of a minimal measurable length7,8 of the order of the Planck length, . This observation has motivated the proposal of generalized uncertainty relations, which imply changes in the energy spectrum of quantum systems. As a consequence, quantum gravitational effects could be revealed by experiments able to test deviations from standard quantum mechanics9,10,11, such as those recently proposed on macroscopic mechanical oscillators12. Here we exploit the sub-millikelvin cooling of the normal modes of the ton-scale gravitational wave detector AURIGA, to place an upper limit for possible Planck-scale modifications on the ground-state energy of an oscillator. Our analysis calls for the development of a satisfactory treatment of multi-particle states in the framework of quantum gravity models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upper limits to the parameter β0 that quantifies the deformation of the standard uncertainty relation in equation (2).

Similar content being viewed by others

References

  1. Amati, D., Ciafaloni, M. & Veneziano, G. Superstring collisions at Planckian energies. Phys. Lett. B 197, 81–88 (1987).

    Article  ADS  Google Scholar 

  2. Gross, D. J. & Mende, P. F. String theory beyond the Planck scale. Nucl. Phys. B 303, 407–454 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  3. Amelino-Camelia, G. Doubly special relativity: First results and key open problems. Int. J. Mod. Phys. D 11, 1643–1669 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  4. Maggiore, M. A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304, 65–69 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. Scardigli, F. Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 452, 39–44 (1999).

    Article  ADS  Google Scholar 

  6. Jizba, P., Kleinert, H. & Scardigli, F. Uncertainty relation on a world crystal and its applications to micro black holes. Phys. Rev. D 81, 084030 (2010).

    Article  ADS  Google Scholar 

  7. Garay, L. G. Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–165 (1995).

    Article  ADS  Google Scholar 

  8. Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. Preprint at http://arxiv.org/abs/arXiv:1203.6191 (2012).

  9. Das, S. & Vagenas, E. C. Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008).

    Article  ADS  Google Scholar 

  10. Ali, A. F., Das, S. & Vagenas, E. C. Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678, 497–499 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  11. Ali, A. F., Das, S. & Vagenas, E. C. A proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011).

    Article  ADS  Google Scholar 

  12. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. S. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nature Phys. 8, 393–397 (2012).

    Article  ADS  Google Scholar 

  13. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  Google Scholar 

  14. Jacob, U. & Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nature Phys. 7, 87–90 (2007).

    Article  ADS  Google Scholar 

  15. Tamburini, F., Cuofano, C., Della Valle, M. & Gilmozzi, R. No quantum gravity signature from the farthest quasars. Astron. Astrophys. 533, 1–5 (2011).

    Article  ADS  Google Scholar 

  16. Abdo, A. A. et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331–334 (2009).

    Article  ADS  Google Scholar 

  17. O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–713 (2010).

    Article  ADS  Google Scholar 

  18. Teufel, J. D. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).

    Article  ADS  Google Scholar 

  19. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  ADS  Google Scholar 

  20. Safavi-Naeini, A. H. et al. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012).

    Article  ADS  Google Scholar 

  21. Hossenfelder, S. Multiparticle states in deformed special relativity. Phys. Rev. D 75, 105005 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  22. Quesne, C. & Tkachuk, V. M. Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010).

    Article  ADS  Google Scholar 

  23. Maggiore, M. The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 319, 83–86 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  24. Kempf, A., Mangano, G. & Mann, R. B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  25. Sathyaprakash, B.S. & Schutz, B. F. Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12, 1–141 (2009).

    Article  ADS  Google Scholar 

  26. Allen, Z. A. et al. First search for gravitational wave bursts with a network of detectors. Phys. Rev. Lett. 85, 5046–5050 (2000).

    Article  ADS  Google Scholar 

  27. Vinante, A. et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Phys. Rev. Lett. 101, 033601 (2008).

    Article  ADS  Google Scholar 

  28. Vinante, A. et al. Stabilization and optimization of a two-stage d.c. SQUID coupled to a high Q resonator. Physica C 368, 176–180 (2002).

    Article  ADS  Google Scholar 

  29. Baggio, L. et al. 3-mode detection for widening the bandwidth of resonant gravitational wave detectors. Phys. Rev. Lett. 94, 241101 (2005).

    Article  ADS  Google Scholar 

  30. Selected Articles from the 9th Edoardo Amaldi Meeting and the 2011 Numerical Relativity and Data Analysis Meeting (AMALDI 9/NRDA 2011) Class. Quant. Grav. 29, 120301–129603 (Special issue, 2012).

  31. Cerdonio, M. & Losurdo, G. Gravitational waves: from discovery to astronomy. La Riv. Nuovo Cimento 35, 389–480 (2012).

    Google Scholar 

  32. Amelino-Camelia, G. Gravity-wave interferometers as quantum-gravity detectors. Nature 398, 216–218 (1999).

    Article  ADS  Google Scholar 

  33. Hogan, C. J. Interferometers as probes of Planckian quantum geometry. Phys. Rev. D 85, 064007 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F. Marin and F. Marino thank D. Seminara and M. Inguscio for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F. Marin conceived the work, which was further developed with F. Marino and all other authors. F. Marin and F. Marino wrote the manuscript with input from all of the authors.

Corresponding author

Correspondence to Francesco Marin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1025 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin, F., Marino, F., Bonaldi, M. et al. Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Phys 9, 71–73 (2013). https://doi.org/10.1038/nphys2503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing