Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How basin stability complements the linear-stability paradigm

Abstract

The human brain1,2, power grids3, arrays of coupled lasers4 and the Amazon rainforest5,6 are all characterized by multistability7. The likelihood that these systems will remain in the most desirable of their many stable states depends on their stability against significant perturbations, particularly in a state space populated by undesirable states. Here we claim that the traditional linearization-based approach to stability is too local to adequately assess how stable a state is. Instead, we quantify it in terms of basin stability, a new measure related to the volume of the basin of attraction. Basin stability is non-local, nonlinear and easily applicable, even to high-dimensional systems. It provides a long-sought-after explanation for the surprisingly regular topologies8,9,10 of neural networks and power grids, which have eluded theoretical description based solely on linear stability11,12,13. We anticipate that basin stability will provide a powerful tool for complex systems studies, including the assessment of multistable climatic tipping elements14.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thought experiment: marble on a marble track.
Figure 2: State diagram of a bistable stylized forest–savanna model.
Figure 3: Synchronizability and basin stability in Watts–Strogatz networks of chaotic oscillators.
Figure 4: Topological comparison of ensemble results with real-world networks.

Similar content being viewed by others

References

  1. Babloyantz, A. & Destexhe, A. Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517 (1986).

    Article  ADS  Google Scholar 

  2. Lytton, W. W. Computer modelling of epilepsy. Nature Rev. Neurosci. 9, 626–637 (2008).

    Article  Google Scholar 

  3. Machowski, J., Bialek, J. W. & Bumby, J. R. Power System Dynamics: Stability and Control (Wiley, 2008).

    Google Scholar 

  4. Erzgräber, H. et al. Mutually delay-coupled semiconductor lasers: Mode bifurcation scenarios. Opt. Commun. 255, 286–296 (2005).

    Article  ADS  Google Scholar 

  5. Da Silveira Lobo Sternberg, L. Savanna-forest hysteresis in the tropics. Glob. Ecol. Biogeogr. 10, 369–378 (2001).

    Article  Google Scholar 

  6. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  ADS  Google Scholar 

  7. May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).

    Article  ADS  Google Scholar 

  8. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Article  ADS  Google Scholar 

  9. Sporns, O. & Zwi, J. The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004).

    Article  Google Scholar 

  10. Wang, Z., Scaglione, A. & Thomas, R. J. Generating statistically correct random topologies for testing smart grid communication and control networks. IEEE Trans. Smart Grid 1, 28–39 (2010).

    Article  Google Scholar 

  11. Pecora, L. M. & Carroll, T. L. Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

    Article  ADS  Google Scholar 

  12. Barahona, M. & Pecora, L. M. Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

    Article  ADS  Google Scholar 

  13. Hong, H., Kim, B. J., Choi, M. Y. & Park, H. Factors that predict better synchronizability on complex networks. Phys. Rev. E 69, 067105 (2004).

    Article  ADS  Google Scholar 

  14. Lenton, T. M. et al. Tipping elements in the earth’s climate system. Proc. Natl. Acad. Sci. USA 105, 1786–1793 (2008).

    Article  ADS  Google Scholar 

  15. Nusse, H. E. & Yorke, J. A. Basins of attraction. Science 271, 1376–1380 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. Wiley, D. A., Strogatz, S. H. & Girvan, M. The size of the sync basin. Chaos 16, 015103 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  17. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  ADS  Google Scholar 

  18. Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nature 169, 738–747 (2007).

    Article  Google Scholar 

  19. Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  20. Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

    Google Scholar 

  21. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D-U. Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  22. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).

    Article  ADS  Google Scholar 

  23. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. & Zhou, C. Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  24. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Article  Google Scholar 

  25. Fell, J. et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nature Neurosci. 4, 1259–1264 (2001).

    Article  MathSciNet  Google Scholar 

  26. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nature Rev. Neurosci. 12, 105–118 (2011).

    Article  Google Scholar 

  27. Hammond, C., Bergman, H. & Brown, P. Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends Neurosci. 30, 357–364 (2007).

    Article  Google Scholar 

  28. Huang, S. & Ingber, D.E. A non-genetic basis for cancer progression and metastasis: Self-organizing attractors in cell regulatory networks. Breast Disease 26, 27–54 (2007).

    Article  ADS  Google Scholar 

  29. Lovász, L. & Vempala, S. Simulated annealing in convex bodies and an volume algorithm. J. Comput. Syst. Sci. 72, 392–417 (2006).

    Article  MathSciNet  Google Scholar 

  30. Li, G. et al. Towards design principles for optimal transport networks. Phys. Rev. Lett. 104, 018701 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from IRTG 1740 (Deutsche Forschungsgemeinschaft), the SUMO-project (European Union), the ECONS-project (Leibniz Association) and Konrad-Adenauer-Stiftung. They thank N. Fujiwara and A. Rammig for inspiring discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.J.M. conceived the study, performed the numerics, and prepared the manuscript. All authors discussed the results, drew conclusions and edited the manuscript. J.K. supervised the study.

Corresponding author

Correspondence to Peter J. Menck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menck, P., Heitzig, J., Marwan, N. et al. How basin stability complements the linear-stability paradigm. Nature Phys 9, 89–92 (2013). https://doi.org/10.1038/nphys2516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2516

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing