Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin imbalance and spin-charge separation in a mesoscopic superconductor

Abstract

What happens to spin-polarized electrons when they enter a superconductor? Superconductors at equilibrium and at finite temperature contain both paired particles (of opposite spin) in the condensate phase as well as unpaired, spin-randomized quasiparticles. Injecting spin-polarized electrons into a superconductor (and removing pairs) thus creates both spin and charge imbalances1,2,3,4,5,6,7, which must relax when the injection stops, but not necessarily over the same time (or length) scale. These different relaxation times can be probed by creating a dynamic equilibrium between continuous injection and relaxation; this leads to constant-in-time spin and charge imbalances, which scale with their respective relaxation times and with the injection current. Whereas charge imbalances in superconductors have been studied in great detail both theoretically8 and experimentally9, spin imbalances have not received much experimental attention6,10,11 despite intriguing theoretical predictions of spin-charge separation effects12,13. Here we present evidence for an almost-chargeless spin imbalance in a mesoscopic superconductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device characterization and measurement set-up.
Figure 2: Spin imbalance.
Figure 3: Spin versus charge imbalance.
Figure 4: High magnetic fields and temperature depedence.

Similar content being viewed by others

References

  1. Clarke, J. Experimental observation of pair-quasiparticle potential difference in nonequilibrium superconductors. Phys. Rev. Lett. 28, 1363–1366 (1972).

    Article  ADS  Google Scholar 

  2. Tinkham, M. & Clarke, J. Theory of pair-quasiparticle potential difference in nonequilibrium superconductors. Phys. Rev. Lett. 28, 1366–1369 (1972).

    Article  ADS  Google Scholar 

  3. Aronov, A. Spin injection and polarization of excitations and nuclei in superconductors. J. Exp. Theor. Phys. 44, 193–196 (1976).

    ADS  Google Scholar 

  4. Johnson, M. Spin coupled resistance observed in ferromagnet–superconductor–ferromagnet trilayers. Appl. Phys. Lett. 65, 1460–1462 (1994).

    Article  ADS  Google Scholar 

  5. Takahashi, S., Imamura, H. & Maekawa, S. Spin imbalance and magnetoresistance in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys. Rev. Lett. 82, 3911–3914 (1999).

    Article  ADS  Google Scholar 

  6. Chen, C. D., Kuo, W., Chung, D. S., Shyu, J. H. & Wu, C. S. Evidence for suppression of superconductivity by spin imbalance in Co–Al–Co single-electron transistors. Phys. Rev. Lett. 88, 047004 (2002).

    Article  ADS  Google Scholar 

  7. Tinkham, M. Tunneling generation, relaxation, and tunneling detection of hole–electron imbalance in superconductors. Phys. Rev. B 6, 1747–1756 (1972).

    Article  ADS  Google Scholar 

  8. Schmid, A. & Schön, G. Linearized kinetic equations and relaxation processes of a superconductor near TC . J. Low Temp. Phys. 20, 207–227 (1975).

    Article  ADS  Google Scholar 

  9. Clarke, J. in Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries (ed. Grey, K. E.) 353–422 (NATO Science Series B, Vol. 65, Springer, 1981).

    Book  Google Scholar 

  10. Leridon, B., Lesueur, J. & Aprili, M. Spin-bottleneck due to spin-charge separation in a superconductor. Phys. Rev. B 72, 180505 (2005).

    Article  ADS  Google Scholar 

  11. Cadden-Zimansky, P., Jiang, Z. & Chandrasekhar, V. Charge imbalance, crossed Andreev reflection and elastic co-tunnelling in ferromagnet/superconductor/normal-metal structures. New J. Phys. 9, 116 (2007).

    Article  ADS  Google Scholar 

  12. Kivelson, S. A. & Rokhsar, D. S. Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693–11696 (1990).

    Article  ADS  Google Scholar 

  13. Zhao, H. L. & Hershfield, S. Tunneling, relaxation of spin-polarized quasiparticles, and spin-charge separation in superconductors. Phys. Rev. B 52, 3632–3638 (1995).

    Article  ADS  Google Scholar 

  14. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 2004).

    Google Scholar 

  15. Chiodi, F., Aprili, M. & Reulet, B. Evidence for two time scales in long SNS junctions. Phys. Rev. Lett. 103, 177002 (2009).

    Article  ADS  Google Scholar 

  16. Jedema, F. J., Heersche, H. B., Filip, A. T., Baselmans, J. J. A. & van Wees, B. J. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713–716 (2002).

    Article  ADS  Google Scholar 

  17. Johnson, M. & Silsbee, R. H. Spin-injection experiment. Phys. Rev. B 37, 5326–5335 (1988).

    Article  ADS  Google Scholar 

  18. Valenzuela, S. O. & Tinkham, M. Spin-polarized tunneling in room-temperature mesoscopic spin valves. Appl. Phys. Lett. 85, 5914–5916 (2004).

    Article  ADS  Google Scholar 

  19. Münzenberg, M. & Moodera, J. S. Superconductor-ferromagnet tunneling measurements indicate sp-spin and d-spin currents. Phys. Rev. B 70, 060402 (2004).

    Article  ADS  Google Scholar 

  20. Alvarado, S. F. Tunneling potential barrier dependence of electron spin polarization. Phys. Rev. Lett. 75, 513–516 (1995).

    Article  ADS  Google Scholar 

  21. Tedrow, P. M. & Meservey, R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7, 318–326 (1973).

    Article  ADS  Google Scholar 

  22. Meservey, R. & Tedrow, P. Spin-polarized electron tunneling. Phys. Rep. 238, 173–243 (1994).

    Article  ADS  Google Scholar 

  23. Fulde, P. High field superconductivity in thin films. Adv. Phys. 22, 667–719 (1973).

    Article  ADS  Google Scholar 

  24. Anthore, A., Pothier, H. & Esteve, D. Density of states in a superconductor carrying a supercurrent. Phys. Rev. Lett. 90, 127001 (2003).

    Article  ADS  Google Scholar 

  25. Poli, N. et al. Spin injection and relaxation in a mesoscopic superconductor. Phys. Rev. Lett. 100, 136601 (2008).

    Article  ADS  Google Scholar 

  26. Huertas-Hernando, D., Nazarov, Y. V. & Belzig, W. Absolute spin-valve effect with superconducting proximity structures. Phys. Rev. Lett. 88, 047003 (2002).

    Article  ADS  Google Scholar 

  27. Bergmann, G., Lu, J. & Wang, D. Meservey-Tedrow effect in ferromagnet/superconductor/ferromagnet double tunnel junctions. Phys. Rev. B 71, 134521 (2005).

    Article  ADS  Google Scholar 

  28. Pierre, F. et al. Dephasing of electrons in mesoscopic metal wires. Phys. Rev. B 68, 085413 (2003).

    Article  ADS  Google Scholar 

  29. Lemberger, T. R. One-to-one correspondence of charge-imbalance relaxing mechanisms with pair-breaking mechanisms in superconductors. Phys. Rev. B 29, 4946–4950 (1984).

    Article  ADS  Google Scholar 

  30. Hübler, F., Lemyre, J. C., Beckmann, D. & v Löhneysen, H. Charge imbalance in superconductors in the low-temperature limit. Phys. Rev. B 81, 184524 (2010).

    Article  ADS  Google Scholar 

  31. Kleine, A. et al. Magnetic field and contact resistance dependence of non-local charge imbalance. Nanotechnology 21, 274002 (2010).

    Article  Google Scholar 

  32. Yang, H., Yang, S., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nature Mater. 9, 586–593 (2010).

    Article  ADS  Google Scholar 

  33. Yafet, Y. Conduction electron spin relaxation in the superconducting state. Phys. Lett. A 98, 287–290 (1983).

    Article  ADS  Google Scholar 

  34. Hübler, F., Wolf, M. J., Beckmann, D. & v. Löhneysen, H. Long-range spin-polarized quasiparticle transport in mesoscopic Al superconductors with a Zeeman splitting. Phys. Rev. Lett. 109, 207001 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Strunk, B. Reulet, J. Gabelli, B. Leridon, Y. Nazarov, D. Beckmann and J. Lesueur for discussions on spin injection; S. Rohart for advice on magnetic materials; S. Autier-Laurent for technical assistance; and S. Guéron, J. Gabelli and R. W. Ogburn for comments on the manuscript. This work was funded by a European Research Council Starting Independent Researcher Grant (NANO-GRAPHENE 256965), a C’NANO grant (DYNAH) from the Ile-de-France region and an ANR Blanc grant (DYCOSMA) from the French Agence Nationale de Recherche.

Author information

Authors and Affiliations

Authors

Contributions

C.Q.H.L. and M.A. fabricated the samples and performed the measurements. All the authors contributed to the data analysis and the writing of the manuscript.

Corresponding author

Correspondence to C. H. L. Quay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1214 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quay, C., Chevallier, D., Bena, C. et al. Spin imbalance and spin-charge separation in a mesoscopic superconductor. Nature Phys 9, 84–88 (2013). https://doi.org/10.1038/nphys2518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing