Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2

Abstract

Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time-reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken1. In certain two-dimensional electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field2,3. In principle, this offers the possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control4,5. Here we investigate this possibility using polarization-resolved photoluminescence of bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible spectrum6,7 allowing direct optical probing5,8,9,10,11,12. We find that in bilayer MoS2 the circularly polarized photoluminescence can be continuously tuned from −15% to 15% as a function of gate voltage, whereas in structurally non-centrosymmetric monolayer MoS2 the photoluminescence polarization is gate independent. The observations are well explained as resulting from the continuous variation of orbital magnetic moments between positive and negative values through symmetry control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MoS2 devices and their symmetry properties.
Figure 2: Electrical control of valley magnetic moment in bilayer MoS2 FETs.
Figure 3: Gate-independent photoluminescence polarization of monolayer MoS2 FETs.
Figure 4: DFT calculation of magnetoelectric effect and associated circular dichroism.

Similar content being viewed by others

References

  1. Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  2. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  ADS  Google Scholar 

  3. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  4. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  5. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  ADS  Google Scholar 

  6. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  7. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  8. Souza, I. & Vanderbilt, D. Dichroic f-sum rule and the orbital magnetization of crystals. Phys. Rev. B 77, 054438 (2008).

    Article  ADS  Google Scholar 

  9. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  ADS  Google Scholar 

  10. Zeng, H., Dai, J., Yao, W., Xiao, D. & Xiaodong, C. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  ADS  Google Scholar 

  11. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  ADS  Google Scholar 

  12. Cao, T., Feng, J., Shi, J., Niu, Q. & Wang, E. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  ADS  Google Scholar 

  13. Akhmerov, A. R. & Beenakker, C. W. J. Detection of valley polarization in graphene by a superconducting contact. Phys. Rev. Lett. 98, 157003 (2007).

    Article  ADS  Google Scholar 

  14. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  ADS  Google Scholar 

  15. Zhu, Z-G. & Berakdar, J. Berry-curvature-mediated valley-Hall and charge-Hall effects in graphene via strain engineering. Phys. Rev. B 84, 195460 (2011).

    Article  ADS  Google Scholar 

  16. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  ADS  Google Scholar 

  17. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  ADS  Google Scholar 

  18. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  19. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  ADS  Google Scholar 

  20. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  ADS  Google Scholar 

  21. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  ADS  Google Scholar 

  22. Yoon, Y., Ganapathi, K. & Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768–3773 (2011).

    Article  ADS  Google Scholar 

  23. Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational study. Phys. Rev. Lett. 108, 156802 (2012).

    Article  ADS  Google Scholar 

  24. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    Article  Google Scholar 

  25. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  Google Scholar 

  26. Jiménez Sandoval, S., Yang, D., Frindt, R. F. & Irwin, J. C. Raman study and lattice dynamics of single molecular layers of MoS2 . Phys. Rev. B 44, 3955 (1991).

    Article  ADS  Google Scholar 

  27. Chakraborty, B. et al. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403 (2012).

    Article  ADS  Google Scholar 

  28. Balocchi, A. et al. Full electrical control of the electron spin relaxation in GaAs quantum wells. Phys. Rev. Lett. 107, 136604 (2011).

    Article  ADS  Google Scholar 

  29. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–614 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank B. Spivak for helpful discussions. This work is mainly supported by the US DoE, BES, Division of Materials Sciences and Engineering (DE-SC0008145), and device fabrication is partially supported by the NSF (DMR-1150719). A.J. was supported by the NSF Graduate Research Fellowship (DGE-0718124). G-B.L. and W.Y. were supported by the Research Grant Council of Hong Kong (HKU 706412P). W.Z. and D.X. were supported by US DoE, BES, Division of Materials Sciences and Engineering. D.C. and Z.F. were supported by the DoE BES (DE-SC0002197). The DFT calculations were performed at the National Energy Research Scientific Computing Center supported by the DoE Office of Science. Device fabrication was performed at the University of Washington Micro Fabrication Facility and NSF-funded Nanotech User Facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and made critical contributions to the work.

Corresponding author

Correspondence to Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 737 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Ross, J., Liu, GB. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nature Phys 9, 149–153 (2013). https://doi.org/10.1038/nphys2524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing