Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a spin phase transition at charge neutrality in bilayer graphene

Abstract

The quantum spin Hall effect is characterized by spin-polarized counter-propagating edge states1,2,3. It has been predicted that this edge state configuration could occur in graphene when spin-split electron- and hole-like Landau levels are forced to cross at the edge of the sample4,5,6. In particular, a quantum-spin-Hall analogue has been predicted in bilayer graphene with a Landau level filling factor ν = 0 if the ground state is a spin ferromagnet7. Previous studies have demonstrated that the bilayer ν = 0 state is an insulator in a perpendicular magnetic field8,9,10,11,12,13,14, although the exact nature of this state has not been identified. Here we present measurements of the ν = 0 state in a dual-gated bilayer graphene device in a tilted magnetic field. We map out a full phase diagram of the ν = 0 state as a function of experimentally tunable in-plane magnetic field and perpendicular electric field. At large in-plane magnetic field we observe a quantum phase transition to a metallic state with conductance of the order of 4e2/h, consistent with predictions for the ferromagnet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device summary.
Figure 2: Tilted-field transport.
Figure 3: Candidate states.
Figure 4: Phase transitions.

Similar content being viewed by others

References

  1. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005).

    Article  ADS  Google Scholar 

  2. Bernevig, B. A., Hughes, T. L. & Zhang, S-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  Google Scholar 

  3. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  ADS  Google Scholar 

  4. Abanin, D. A., Lee, P. A. & Levitov, L. S. Spin-filtered edge states and quantum Hall effect in graphene. Phys. Rev. Lett. 96, 176803 (2006).

    Article  ADS  Google Scholar 

  5. Fertig, H. A. & Brey, L. Luttinger liquid at the edge of undoped graphene in a strong magnetic field. Phys. Rev. Lett. 97, 116805 (2006).

    Article  ADS  Google Scholar 

  6. Kharitonov, M. Edge excitations of the canted antiferromagnetic phase of the ν = 0 quantum Hall state in graphene: A simplified analysis. Phys. Rev. B 86, 075450 (2012).

    Article  ADS  Google Scholar 

  7. Kharitonov, M. Canted antiferromagnetic phase of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. Lett. 109, 046803 (2012).

    Article  ADS  Google Scholar 

  8. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009).

    Article  ADS  Google Scholar 

  9. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010).

    Article  ADS  Google Scholar 

  10. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010).

    Article  ADS  Google Scholar 

  11. Kim, S., Lee, K. & Tutuc, E. Spin-polarized to valley-polarized transition in graphene bilayers at ν = 0 in high magnetic fields. Phys. Rev. Lett. 107, 016803 (2011).

    Article  ADS  Google Scholar 

  12. Velasco, J. Jr et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotech. 7, 156–160 (2012).

    Article  ADS  Google Scholar 

  13. Veligura, A. et al. Transport gap in suspended bilayer graphene at zero magnetic field. Phys. Rev. B 85, 155412 (2012).

    Article  ADS  Google Scholar 

  14. Freitag, F., Trbovic, J., Weiss, M. & Schenberger, C. Spontaneously gapped ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 076602 (2012).

    Article  ADS  Google Scholar 

  15. Gorbar, E. V., Gusynin, V. P. & Miransky, V. A. Dynamics and phase diagram of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. B 81, 155451 (2010).

    Article  ADS  Google Scholar 

  16. Lemonik, Y., Aleiner, I. L. & Falko, V. I. Competing nematic, antiferromagnetic, and spin-flux orders in the ground state of bilayer graphene. Phys. Rev. B 85, 245451 (2012).

    Article  ADS  Google Scholar 

  17. Kharitonov, M. Antiferromagnetic state in bilayer graphene. Phys. Rev. B 86, 195435 (2012).

    Article  ADS  Google Scholar 

  18. Zhang, F. & MacDonald, A. H. Distinguishing spontaneous quantum Hall states in bilayer graphene. Phys. Rev. Lett. 108, 186804 (2012).

    Article  ADS  Google Scholar 

  19. Lemonik, Y., Aleiner, I. L., Toke, C. & Falko, V. I. Spontaneous symmetry breaking and Lifshitz transition in bilayer graphene. Phys. Rev. B 82, 201408 (2010).

    Article  ADS  Google Scholar 

  20. Vafek, O. & Yang, K. Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach. Phys. Rev. B 81, 041401 (2010).

    Article  ADS  Google Scholar 

  21. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B 82, 115124 (2010).

    Article  ADS  Google Scholar 

  22. Castro, E. V., Peres, N. M. R., Stauber, T. & Silva, N. A. P. Low-density ferromagnetism in biased bilayer graphene. Phys. Rev. Lett. 100, 186803 (2008).

    Article  ADS  Google Scholar 

  23. Mayorov, A. S. et al. Interaction-driven spectrum reconstruction in bilayer graphene. Science 333, 860–863 (2011).

    Article  ADS  Google Scholar 

  24. McCann, E. & Falko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  25. Barlas, Y., Ct, R., Nomura, K. & MacDonald, A. H. Intra-Landau-level cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 101, 097601 (2008).

    Article  ADS  Google Scholar 

  26. Das Sarma, S., Sachdev, S. & Zheng, L. Double-layer quantum Hall antiferromagnetism at filling fraction ν = 2/m where m is an odd integer. Phys. Rev. Lett. 79, 917–920 (1997).

    Article  ADS  Google Scholar 

  27. Pellegrini, V. et al. Evidence of soft-mode quantum phase transitions in electron double layers. Science 281, 799–802 (1998).

    Article  ADS  Google Scholar 

  28. Grivei, E., Melinte, S., Bayot, V., Manoharan, H. C. & Shayegan, M. Multiple interacting bilayer electron system: Magnetotransport and heat capacity measurements. Phys. Rev. B 68, 193404 (2003).

    Article  ADS  Google Scholar 

  29. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    Article  ADS  Google Scholar 

  30. Roth, A. et al. Nonlocal transport in the quantum spin Hall state. Science 325, 294–297 (2009).

    Article  ADS  Google Scholar 

  31. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Kharitonov for useful discussions. Portions of this experiment were conducted at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-0654118, the State of Florida and the US Department of Energy. We thank S. Hannahs, T. Murphy and A. Suslov for experimental assistance at NHMFL. This work is supported by AFOSR MURI. P.M. acknowledges support from ONR MURI and FENA. A.F.Y. and P.K. acknowledge support from DOE (DE-FG02-05ER46215) for carrying out experiments and INDEX for sample fabrication.

Author information

Authors and Affiliations

Authors

Contributions

P.M., C.R.D. and A.F.Y. designed and conceived the experiment. T.T. and K.W. synthesized hBN samples, P.M. fabricated the samples. P.M., C.R.D. and A.F.Y. performed the measurements. P.M., C.R.D. and P.K. analysed the data and wrote the paper. J.H., K.L.S. and P.K. advised on experiments.

Corresponding author

Correspondence to P. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maher, P., Dean, C., Young, A. et al. Evidence for a spin phase transition at charge neutrality in bilayer graphene. Nature Phys 9, 154–158 (2013). https://doi.org/10.1038/nphys2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys2528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing